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ABSTRACT

Feature Identification and Reduction for Improved Generalization
Accuracy in Secondary-Structure Prediction Using Temporal
Context Inputs in Machine-Learning Models

Matthew Benjamin Seeley
Department of Computer Science, BYU
Master of Science

A protein’s properties are influenced by both its amino-acid sequence and its three-
dimensional conformation. Ascertaining a protein’s sequence is relatively easy using modern
techniques, but determining its conformation requires much more expensive and time-
consuming techniques. Consequently, it would be useful to identify a method that can
accurately predict a protein’s secondary-structure conformation using only the protein’s
sequence data. This problem is not trivial, however, because identical amino-acid subsequences
in different contexts sometimes have disparate secondary structures, while highly dissimilar
amino-acid subsequences sometimes have identical secondary structures. We propose (1) to
develop a set of metrics that facilitates better comparisons between dissimilar subsequences
and (2) to design a custom set of inputs for machine-learning models that can harness
contextual dependence information between the secondary structures of successive amino
acids in order to achieve better secondary-structure prediction accuracy.

Keywords: Bioinformatics, machine learning, secondary-structure prediction, amino-acid
properties
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Chapter 1

Introduction

1.1 Initial Motivation and Objectives

Accurate protein secondary-structure prediction from amino-acid sequence data has been
called the holy grail of structural bioinformatics [1]. This is due, in part, to the fact that
sequence data can be extracted using relatively fast and inexpensive laboratory techniques
such as Edman sequencing, while protein structural data typically has to be extracted
using much more expensive techniques such as x-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy. To illustrate the price difference, consider that the average
cost of determining a novel protein’s three-dimensional structure was about $138,000 (though
the best lab averaged $67,000 per protein) in 2006 [2]. A protein sequence, by contrast,
can now be determined for just over $100 [3]. A reliable method for predicting secondary
structure from sequence data could, therefore, help researchers model a sequenced protein’s
three-dimensional structure quickly and inexpensively.

Many of the most effective modern algorithms for secondary-structure prediction use
information from multiple-sequence alignments of homologous proteins with known structures.
This is undoubtedly a sound approach for predicting structures of sequences that have many
known homologues; good accuracy could probably be achieved by simply predicting that the
test sequence’s structural label at any given position in the sequence matches the consensus
label at the corresponding position in the multiple-sequence alignment. However, ”a significant
number of proteins identified in genome sequencing projects have no detectable sequence

similarity to any known protein” [4]. For these proteins with few or no known homologues,
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it would be prudent to use a different approach—one that still leverages domain-specific
knowledge in the context of a machine-learning model.

Ideally, predicting the secondary structure of a protein at a given amino-acid position
would be as simple as identifying unique, short subsequences whose central amino acids
always have one specific label. This approach’s effectiveness is limited, though, for two
reasons: first, the number of possible permutations of 22 amino acids (with replacement) for a
subsequence is exponentially large. There would, for example, be 22!3 possible subsequences
that are 13 amino acids long (i.e., of length 13aa) . Even with all the data in the Research
Collaboratory for Structural Bioinformatics protein data bank (RCSB PDB) [5], the number
of subsequences of length 13aa with known labels is a very small fraction of the number
of subsequences that is possible. More important, though, is the fact that the RCSB data
demonstrates that many identical subsequences of length 13aa have different labels when
they appear in different proteins or in different contexts. One study has even demonstrated
that a specific sequence of eleven amino acids folds into an alpha helix when inserted into
one position of a protein, but folds into a beta sheet when inserted into a different position
in the same protein [6]. Thus, even if the search space of every possible subsequence were
tractable, some subsequences could only be assigned tentative majority labels; this would
limit the maximum theoretical accuracy of a predictive model.

In order for a machine-learning model to generalize well to test instances that have
little sequence identity with training instances, it must use some intelligent metric that
can tell when dissimilar subsequences have amino acids with similar properties at identical
positions. It must also be able to identify similar periodic patterns in those properties so
that instances that are nearly identical, but whose attribute values are all shifted by a single
position (like two successive sliding windows) can still be recognized as similar to one another.
Furthermore, the model should have some means for incorporating contextual information

about the predicted structures of preceding and succeeding amino acids in the protein. This
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should enable the model to resolve the ambiguity that occurs when identical subsequences
exhibit different structures.

For this thesis, the first aim was to investigate and refine a set of metrics that can
measure the similarity between amino-acid subsequences based on quantitative properties
rather than on sequence identity alone and to use these metrics to develop a custom set of
input features for machine-learning models in order to improve protein secondary-structure
prediction accuracy. The second aim was to develop a customized set of forward- and
backward-context attributes to leverage context information in order to predict when identical
subsequences will have different structures. Since the ultimate intention was for these context
attributes to comprise the predicted output classes of an instant subsequence’s immediate
neighbors in a sliding-window scheme, using an iterative relaxation process in order to

maximize prediction accuracy was included in this second aim.

1.2 Motivation for Investigating Features Based on Amino-Acid Properties

Measuring how similar two amino acids are to one another is deceptively difficult because
there are hundreds of known properties [7] that can be compared; some may be similar to
each other with regard to one property, but dissimilar to each other with regard to another
property. While it is likely that many of these properties would not yield useful information
for secondary structure prediction, it is difficult to define each property’s relevance a priori.
Consequently, we planned to evaluate the relevance of each of these properties individually, if
possible.

In addition to a metric that measures similarity between amino acids situated at
identical positions, there should also be some metric that captures similarity between sequences.
This would be useful because the test instances and training instances used by many secondary-
structure prediction approaches consist of sliding windows applied across the linear sequence
of amino acids that makes up a given protein’s primary structure. In these approaches, each

input feature of a given instance is the single-letter representing an amino acid at a given
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Figure 1.1: These are Wenxiang diagrams of a true alpha helix (left) and a region without
secondary structure mapped as though it was an alpha helix (right). Hydrophobic residues
are colored red.

position in the sliding window. To illustrate how this could be problematic, consider a sliding
window of size k applied to a protein of total length n. Each instance would have £k input
features, so there would be a total of n-k+1 instances derived from the protein. Any two
consecutive instances would be very similar because they would share a subsequence of length
k-1. The values for the input features, however, would all be shifted over by one. Hence, a
classifier that is only configured to compare input-feature values at identical positions would
have no way of knowing that the two consecutive instances should actually be considered
very similar.

Hydrophobic moment is an example of such a metric [8]. It is generally known that
the interaction of amino-acid residues with water strongly influences the native structure of
proteins [9].

Amphiphilic helices are often situated in proteins such that one side of the helix
interacts with the hydrophobic interior of the protein and the other side interacts with the
hydrophilic surrounding solution. As a result, hydrophobic and hydrophilic residues are

generally distributed in a non-random pattern that isolates them on opposite sides of the
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helix. The angle at which one residue is radially pointed outward from the center of an alpha
helix is approximately 100 degrees greater than the angle of the previous residue in the helix.
This principle is best illustrated with a Wenxiang diagram [9], a ”conical projection of an
a-helix onto a plane perpendicular to its axis” as shown in figure 1.1 [10].

Some researchers have quantified this property by using the hydrophobic moment
[9]. To calculate the hydrophobic moment, a descriptive vector is created for each amino
acid. The direction of the vector points outward from the center of the helical axis toward
the residue, while the magnitude of the vector equals the hydrophobic magnitude of the
residue (which is, of course, negative for hydrophilic residues). The hydrophobic moment of
a sequence of amino acids is calculated by adding all the individual residue vectors. It has
been shown to be a helpful metric for secondary-structure prediction [8].

In order to glean more information from the hydrophobicity patterns, though, a slightly
modified approach was also used for this project. The cumulative moments of the hydrophilic
and hydrophobic residues can be calculated separately and the angle between them can be
determined. The inter-moment angle is a metric we invented independently and have not
seen used in any of the literature, but it looked promising because data gleaned from ss.txt
demonstrates that the distributions of inter-moment angles for alpha-helical regions and
unstructured regions appear to be very distinguishable; that data is shown in the histograms

found in figures 1.2 and 1.3.

1.3 Motivation for Investigating Contextual Features Comprising Predicted

Output Classes of Neighboring Residues

When aiming to identify the secondary-structure label of any single amino acid in a sequence,
it is important to remember that there is a high degree of dependence between its label
and the labels of the amino acids immediately next to it. An amino acid that is part of an
alpha helix, for example, is always next to at least one other amino acid that also has the

same label because at least four consecutive amino acids are needed to form an alpha helix
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structure [11]. The principle is also relevant to other types of secondary structures, since
they are all formed as a result of bonding between the backbones of at least two amino acids.
The data found in ss.txt, a file containing the known secondary structure labels for all RCSB
Protein Data Bank files, is consistent with this principle. As an example, the distribution of
lengths of all contiguous alpha helix structures found in ss.txt is shown in figure 1.4.

Given this high degree of dependence between the labels of successive amino acids,
the best machine-learning models for secondary-structure prediction should incorporate some
means for capturing the dependence information that is found in a given training set. Complex
dependencies that cannot be captured by simply looking back one step clearly exist in this
project’s data set. For example, if the label N signifies no secondary structure and the label H
signifies an alpha-helix structure, four amino acids with the labels NHHH must be followed by
an amino acid with label H, but one amino acid with the label H may or may not be followed
by an amino acid with the label H. As a result, it would be preferable to use predicted labels

from at least four preceding instances as temporal backward-context attributes for a current

instance.
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1.4 A Note on Project Scope

DSSP is a database of secondary structure assignments for all entries in the RCSB Protein
Data Bank [12]. DSSP also refers to the program that extrapolates secondary-structure
assignment based on the three-dimensional coordinates available to a given protein in the
RCSB Protein Data Bank [13]. Kabsch and Sander’s Dictionary of Secondary Structures of
Proteins (the unabbreviated form of the acronym DSSP) defines eight possible secondary-
structure labels: a-helix (H), residue in isolated beta bridge (B), extended beta strand
(B-sheet) (E), 319 helix (G), m-helix (I), hydrogen-bonded turn (T), bend (S), and none ().
For the purposes of evaluating programs that predict secondary structure, however, Rost and
Sander outlined the following convention: the three different types of helices are grouped
together into once class (H), the extended beta strand remains a stand-alone class, and the
remaining structures (including "none”) are grouped together into the loop class (L, though
we will call it N) [14]. Qian and Sejnowski also provided a concise explanation of a common

metric used for measuring model performance on secondary-structure prediction:

Pa+P +Pcoi
Q=" (L1)

where N is the total number of residues whose structures were predicted and F,, P3, and
P.,i; are the number of residues with each respective type of secondary structure that were
predicted correctly [47].

For this project, we chose to evaluate our final methods using the three-class convention
because some classes from the eight-class definitions are extremely rare [13]. Furthermore,
most published studies on secondary-structure prediction have used this convention, so it will
be easier to compare our results to those of other researchers if we use it.

As we mention at various points throughout this thesis, the current models that achieve
the highest secondary-structure prediction accuracy are those that use information from

multiple-sequence alignments. Aydin [4] refers to models that do not use information from
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homologous proteins as single-sequence algorithms. Note that the single-sequence concept is
more stringent than the sequence-unique concept (as used in CASP). The latter only requires
that there be no significant similarities between proteins in the test set and proteins in the
training set [4]. Unlike the single-sequence condition, however, it still allows sequence profile
information to be used; this improves prediction accuracy by several percentage points [4].
The best current single-sequence approach, though, achieves a prediction accuracy below 70%
[15].

We chose to focus on a single-sequence algorithm for several reasons: (1) multiple-
sequence alignments are computationally expensive; (2) the accuracy of any algorithm applied
in conjunction with a multiple-sequence alignment might be more dependent on the degree
of homology between the aligned sequences and the test sequences than on the merits of
the algorithm itself; (3) there are many proteins with no known homologues [4]; and (4) our
method can be used in conjunction with methods that use multiple-sequence alignments in

the future if we so desire.

1.5 Summary of Introduction and Thesis Statement

There is demonstrable evidence that information that can be gleaned from amino-acid
properties and from predicted labels of neighboring amino-acids may help identify patterns
that may ultimately prove useful for improving protein secondary-structure prediction,
particularly for proteins that lack known homologues. In this project, a set of input features
based on amino-acid properties is developed and shown to aid several machine-learning
classifiers in achieving better ()3 secondary-structure prediction accuracy under conditions
where close homologues are not used in the training set. In addition, a set of inputs that
harnesses contextual dependence information between the secondary structures of successive
amino acids is also shown to aid a few machine-learning classifiers in achieving better Q3

secondary-structure prediction accuracy in some limited circumstances.
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Chapter 2

Related Work

Researchers have been focused on identifying and predicting protein secondary struc-
ture for over five decades. The following sections provide some concise chronological summaries
of the development of the theory and the approaches that researchers have used for secondary-
structure prediction. The focus of the last two subsections narrows in to describe approaches
that have used some form of information derived from amino-acid properties and approaches
that have used predicted labels of neighboring amino acids to provide context information.
Since this project focuses on secondary-structure prediction for proteins that lack known
homologues, the approaches that do not require homology information will ultimately provide

the best apples-to-apples benchmark to which our approach can be compared.

2.1 Brief Explanation of the History of Secondary-Structure Prediction

2.1.1 The First Decade

In 1951, researchers first described the patterns we call secondary structure in proteins [16, 17].
A few years later (1954), researchers identified proline as an amino acid that strongly affected
secondary-structure patterns [18, 19]. In that same decade (1958), x-ray analysis of proteins
progressed to the point where it was finally possible to generate complete three-dimensional

models of proteins [20].
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2.1.2 The Hypothesis of Absolute Determinism

In 1964, Straub published a thorough article describing the ”widely accepted hypothesis” that
secondary and tertiary structure could be determined entirely based on sequence data [21].
The theory seemed attractive enough, especially given that some previous and subsequent
studies demonstrated that many unfolded proteins can refold into their original conformations
when placed in the proper environments [22, 23]. However, Straub wisely noted that some
observations were "not in harmony with the theory of absolute determinism,” thereby showing
awareness of the problem’s greater complexity [21].

Early methods for secondary-structure prediction continued to develop; in general, they
were simple rule-based models based on statistical correlations between the presence of certain
amino acids and helices. In 1965, Guzzo suggested that certain amino acids—specifically
proline, aspartic acid, glutamic acid, and histidine—were needed for an alpha helix to form
[24]. The following year, Prothero extended Guzzo’s work by proposing that any region of five
amino-acid residues would be helical if at least three of the five were Ala, Val, Leu, or Glu
and that any region of seven amino-acid residues would be helical if at least three residues
were Ala, Val, Leu, or Glu and at least one was Ilu, Thr, or GIn [25]. Periti [26] and Ptitsyn
[27] also used statistical analyses to generate simple predictive models. In addition, Schiffer
(1967) observed that helical-wheel representations of a-helices in proteins like myoglobin and
hemoglobin demonstrated distinctive hydrophobic arcs that could help distinguish helical
regions from non-helical ones; this was perhaps one of the earliest examples of how a periodic

pattern of an amino-acid property could aid in secondary-structure prediction [28].

2.1.3 Free Energy, Levinthal’s Paradox, and Anfinsen’s Dogma

By 1969, some had theorized that a protein would simply fold into the conformation cor-
responding to its globally lowest free energy; Cyrus Levinthal, however, presented the
now-famous ”Levinthal’s paradox” in which he argued that a protein could not randomly

move through all of its possible conformations quickly enough to find its global minimum in
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time to explain the experimental refolding speeds of some proteins [29]. Several years later
(1973), Anfinsen presented a postulate that is now known as ” Anfinsen’s Dogma”: given a
specific set of environmental conditions, a small globular protein’s native conformation will
be a unique, stable, and kinetically accessible structure—though it may only represent a local
minimum relative to free energy [30]. Simon also published useful research detailing some
structural features that contribute to refolding ability [23]. (As a side note, it is now known

that there are exceptions to Anfinsen’s dogma, such as intrinsically disordered proteins [31]).

2.1.4 Early Statistical Models

In the meantime, models for secondary-structure prediction continued to develop. In 1971,
Robson and Pain used an information-theory approach to harness some known statistical
information about single residues and pairwise residue combinations into a simple predictive
model [32]. That same year, the Protein Data Bank was officially established [33]. Nagano
[34], Garnier [35], and Chou & Fasman [36] all developed methods that harnessed correlations
between amino acids and secondary structure. Lim [37] and Ptitsyn [38] also began considering
the influence of physico-chemical properties on secondary structure. In 1983, Kabsch &
Sander compared the methods of Chou & Fasman, Lim, and Garnier, respectively, and tested
them with newly available data; they ultimately concluded that the best overall three-state
prediction accuracy that these methods could consistently achieve was about 56% [39]. Cohen
[40] developed a model that considered hydrophilicity (the inverse of hydrophobicity) spacing
patterns. Since these models were not designed to use information from multiple-sequence
alignments or other information that is dependent on homology, they can appropriately be

compared to the models developed in this project.
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2.1.5 Early Machine-learning Models and Multiple-sequence Alignment

Information

As early as 1978, it had been suggested that information from multiple-sequence alignments
would improve the results of secondary-structure prediction [35]. A number of different
researchers aimed to harness this information throughout the 1970s and 1980s [41, 42, 43, 44,
45].

In 1988, both Bohr [46] and Qian & Sejnowski [47] applied neural-network approaches
to the secondary-structure prediction problem [47]. The latter selected a set of 106 proteins
with known structures, taking care to limit the number of sequences that were ”almost
identical” because their results were "highly sensitive to homologies between the testing and
training sets” [47]. Each data instance was derived from a sliding window of 13 amino-acid
residues; the amino-acid identities of the 13 residues comprised the input features, while the
three-class secondary structure label for one of the amino acids in the window comprised
the output class [47]. They also provided a concise explanation of the Q)3 metric used for
measuring model performance on secondary-structure prediction (shown in equation 1.1)[47].
Qian and Sejnowski’s method ultimately achieved a Q3 prediction accuracy of 64.3%:; they
suggested that a theoretical limit of about 70% could be achieved using local methods [47].
Since Qian and Sejnowski’s did not use homology information and were careful ensure there
was minimal homology between proteins in the training set and the test set, their results
probably provide the best apples-to-apples benchmark for the methods used in this project.

Other researchers quickly followed suit by applying neural networks to secondary-
structure prediction [48, 49, 50, 51, 52]. In 1993, Rost and Sander were able to achieve 70.8%
accuracy by using a neural-network approach that added information from multiple-sequence
alignments; in the process, they compiled the data set of that is now commonly known as
RS126 [14]. However, since Rost and Sander used multiple-sequence alignments (and therefore

homology information), their results would not serve as a good benchmark for the results
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achieved by models that do not use homology information (such as the ones developed in

this project).

2.1.6 The Modern Era

In the past 20 years, researchers have continued to apply neural networks and other machine-
learning methods to the secondary-structure prediction problem. Some additional models
that have been used include support-vector machines [53, 54|, recurrent neural networks [55],
decision trees [56], Bayesian networks [57], nearest-neighbor algorithms [58, 59], and hidden
Markov models [60]. In general, the methods that achieve the highest prediction accuracies
use information from multiple-sequence alignments and position-specific scoring matrices
[61]. Others have also shown that a protein’s family classification, which is another type of
homology information, can also be used to increase prediction accuracy [15]. Berezovsky and
Trifonov also presented evidence that that proteins fold into subunits of 25-30 amino acids
in a local way [62]. One recent method that strategically used homology information even
reported achieving prediction accuracy exceeding 90% [63].

There are many different methods available for secondary-structure prediction, but
Pirovano and Heringa suggest that SSpro is "among the leading secondary structure prediction
algorithms in terms of accuracy” [64]. In addition, they identify Porter as the ”current top
performer” out of all algorithms currently registered on the EVA (Evaluation of Automatic
protein structure prediction) server—a web-based assessment tool for evaluating the accuracy
of secondary-structure prediction methods [64]. They also mention that PSIPRED is relatively
accurate, easy to use, and popular [64]. However, because SSpro, Porter, PSIPRED, and
even Rost and Sander’s model all heavily rely on the use of homology information, they do
not conform to the sequence-unique approach and are therefore not ideal models to which our
sequence-unique model can be compared. As a result, the best models for apples-to-apples

comparison include Qian and Sejnowski’s model and the single-sequence leaders described by

Aydin.
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2.1.7 Use of Amino-Acid Properties in Secondary-Structure Prediction

There are some key amino-acid properties that have been shown to aid in secondary-structure
prediction in the absence of information from homologous proteins. The properties that
are generally recognized as being most relevant include residue conformational propensities
9, 65, 8], hydrophobic moments [9, 8], sequence edge effects [8], and residue ratios [8].
Grantham polarity scales [66], molecular weight [52], pseudo amino acid composition [54],
and pair-coupled amino acid composition [88] have also been used by different researchers to
aid in secondary-structure prediction.

Amino-acid properties have also been frequently used for classifying proteins into
families. Cai, for example, used properties such as hydrophobicity, normalized van der
Waals volume, polarity, polarizability, charge, surface tension, and solvent accessibility to
classify proteins into families [67]. Others have used different sets of properties to classify
proteins into families [68]. Family classifications, in turn, have been shown to be helpful for

secondary-structure prediction [15].

2.1.8 Use of Predicted Labels of Neighboring Amino Acids for Context in

Secondary-Structure Prediction

A number of researchers have aimed to consider, in one form or another, the predicted labels
of neighboring amino acids as context to aid in secondary-structure prediction. Petersen, for
example, used a sliding window of 17 residues as input to a neural network that predicted
the label of the middle amino acid and its immediate neighbors simultaneously such that
the prediction for the central amino acid at position 7 was dependent on the predictions for
the amino acids at positions ¢ + 1 and ¢ — 1 [69]. Lundegaard used a similar sliding-window
approach that also predicted the labels of three consecutive amino acids simultaneously [70].
While both used a balloting process, there was no relaxation step after the balloting.
Nyugen and Rajapakse used two-stage multi-class support vector machines wherein

the outputs of the first-stage SVM were used as inputs for the second-stage SVM in order to

15

www.manaraa.com



leverage contextual information—Iike the fact that beta strands consist of at three consecutive
residues and alpha helices consist of at least four [71]. Once the second-stage SVM reached
its final predictions, though, there was no relaxation step.

Baldi and Pollastri used a bi-directional recurrent neural network wherein outputs
from hidden layers on preceding and succeeding sliding windows serve as inputs to the output
layer of an instant sliding window [72, 73|. Their approach also uses information from multiple
sequence alignments and has ultimately been implemented in two of the most successful
secondary-structure-prediction programs to date: SSPro and Porter [73].

Asai used a hidden Markov model that iteratively re-estimated parameters (e.g.,

transition probabilities) [60]; this might be considered a form of relaxation.

2.2 Brief Summary of the Approaches used in this Project that have not been

used Previously

While a small number amino-acid properties have been applied in one way or another to
secondary-structure prediction, our experiments in this project test the usefulness of over
500 different amino-acid properties in single-sequence secondary-structure prediction. In
order to test these properties, we use some known attributes, such as the total hydrophobic
moment and the letters for individual amino acids in a sliding window. We also devise
several novel attributes that can be derived using a given amino-acid property, such as the
inter-moment angle and a series of attributes that represents property moments across several
sub-windows of the sliding window in order to capture information about how the moment is
changing within the instance represented by the sliding window. We also demonstrate that
helpful diversity can be created for a classifier set used to generate majority-vote ensembles
with improved overall prediction accuracy for secondary-structure prediction by using three
different approaches to create classifiers: (1) creating different types of classifiers on the

using the same attributes sets, (2) creating classifiers using different attribute sets derived
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from amino-acid different properties, and (3) creating cost-sensitive versions of classifiers (an
approach that has not been used in in this way).

In addition, we also test the usefulness of attributes that represent both true and
predicted output classes of neighboring instances. We also apply a multiple-round relaxation
process in using the predicted output classes in order to test whether relaxation can be used

to increase prediction accuracy.
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Chapter 3

Preliminary Experimental Result

3.1 Design for the Proof-of-Concept Experiment

While we have provided some theoretical justifications for the proposal in the previous
sections, we also saw the need to run a preliminary experiment for proof-of-concept purposes.
This section describes this experiment.

Venkatarajan used multidimensional scaling to condense the information from 237
amino-acid properties into five quantitative descriptors [7]. It seemed prudent to use these
descriptors for the preliminary proof-of-concept experiment, since they contained a great
deal of information that we hoped might help a machine-learning model quantify amino-acid
similarity.

In the first step of our proof-of-concept experiment, the protein-data-bank (PDB) file
for ferritin from the pseudo-nitzschia series was chosen as the data set because ferritin is a
large protein with intricate secondary-structure patterns. The PDB file was converted to an
arff file using a Perl script; the resulting data set had thirteen attribute columns and one
classification column. For every given instance, each of the attribute columns could have
any single-letter value found in the set {A,R,D,N,C,E,O,G,H,I,LLK.M,F P,Q,S,T,W Y,V X},
where each letter represented its corresponding amino acid (or, in the case of X, an unknown
amino acid; X values are occasionally found in PDB files). The classification column of each
instance could have any single-letter value found in the set {H,B,E,G,I,T,S,N}, where H =
helix, B = residue in isolated beta bridge, E = extended beta strand, G = 319 helix, I =

m-helix, T = hydrogen-bonded turn, S = bend, and N = nothing. The classification column
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Algorithm Prediction Accuracy | Prediction accuracy
_ on control arff file on experimental arff file
Neural Network 69.05% 89.05%
Random Forest 65.23% 86.13%
Naive Baves 59.50% 71.96%
IBK (nearest neighbor) 66.73% 77.49%

Table 3.1: Prediction Accuracies of Several Algorithms on 3E6R Data (Ten-Fold Cross
Validation)

represented the secondary-structure classification of the middle amino acid (i.e., the seventh)
in the instance. The instances represented all successive subsequences of length 13aa (i.e., a
sliding window of size 13 was used). This arff file was meant to serve as a control, since it
used no property-based or temporal-context attributes.

Next, the first arff file was converted to a new arff file that replaced the original
13 amino-acid letter attributes with a set of amino-acid property attributes. This was
done by exchanging each amino-acid letter for its five Venkatarajan quantifiers and its
helical propensity (delimited by commas appropriately) for a total of 78 amino-acid property
attributes. The three whole-subsequence hydrophobicity attributes (inter-moment angle,
magnitude of positive moment, and magnitude of negative moment) were then added, followed
by the output classes of the previous four instances as temporal backward-context attributes.
Thus, each instance in the new arff file had a total of 85 attributes in all. This was also done
with a Perl Script. Both arff files were then tested using several different machine-learning
algorithms in Weka. The results are shown in table 3.1.

The sizable increase achieved in prediction accuracy when using the experimental
attribute set suggested that the three-pronged approach of using temporal context attributes,
individual amino-acid similarity attributes, and whole-subsequence similarity attributes was
potentially more effective than the control approach.

While the results for the proof-of-concept experiments were encouraging, we recognized
that there was a need to (1) test these feature sets on larger and commonly used data sets;

(2) evaluate the amino-acid property features and the temporal context features separately;
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(3) evaluate a larger number of properties; (4) use temporal context features that represented
predicted classes of neighboring amino acids generated through a relaxation process rather

than known ones.

3.2 Explanations Regarding Some Available Data Sets

We identified a number of data sets that have been used to benchmark different methods of
secondary-structure prediction. For background purposes, a brief explanation of each follows.

In general, data sets with higher resolution lead to better prediction accuracy [48].

3.2.1 The ”Molecular Biology (Protein Secondary Structure) Data Set” [47]

This data set was originally compiled in 1988 by Ning Qian (Johns-Hopkins University) and
Terry Sejnowski (UC-San Diego). They were the first researchers to use a neural-network
model to approach secondary-structure prediction, though Robson, Garnier, and Chou &
Fasman had all developed and applied different models to the same problem. This data, which
was downloaded from the UCI Machine Learning repository, comprises a training set and a
test set used in their 1988 paper [47]. They obtained a set of solved protein structures from
the Brookhaven National Laboratory [74] (the predecessor to the RCSB protein data bank);
a method developed by Kabsch and Sander had been used to assign three-class secondary
structure (alpha helix, beta sheet, or coil) based on atomic coordinates found in each protein.
Qian and Sejnowski noted that their results were ”highly sensitive to homologies between
proteins in the testing and training sets,” so they divided the 106 proteins into a training set
with 91 proteins and a test set with 15 proteins such that there was "no homology” between
the training and test sets [47]. They noted—and much of the subsequent research cited above
confirms—that much higher prediction accuracies can be achieved on test sets when models
are trained with homologous data. Using 13 inputs (similar to our experimental setup),
they achieved 64.3% Q3 accuracy and suggested that ”a theoretical limit of 70% [could] be

obtained with local methods.” To date, their paper has been cited over 1,000 times.
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Table 3.2: List of Superseded Protein Structures and their Replacements for Data Set RS126

Superseded ID New ID
3B5C 1CYO
25TV 2BUK
2GCR 1A45
1WSY 1BKS
3GAP 1G6N
2WRP 2079
1FDX 1DUR
2FXB 11QZ

3.2.2 The RS126 Data Set [14]

Rost and Sander compiled a set of 126 proteins known as the RS126 data set. The set
comprises 126 globular- and 4 membrane-protein chains with less than 25% pairwise identity
for lengths greater than 80aa. Subsequent research suggests, though, that pairwise identity
is a poor method of measuring sequence similarity. They noted that "the most reliable
prediction of the structure of new proteins is done by detection of significant similarities to
proteins of known structures.” [14 (citing 76)]. Using homology information derived from

multiple-sequence alignments, they achieved an overall Q3 accuracy of 70.8%.

3.2.3 The CB396, CB251, and CB513 Data Sets [61]

In 1999, Cuff and Barton re-iterated that most successful techniques for secondary-structure
prediction rely on aligning test instances with homologues [61]. They emphasized that there
should be "no detectable sequence similarity” between training and test sets [61]. They
explained that up to four fifths of known homologues may be overlooked if only pairwise
sequence-alignment methods are used to measure homology [61]. They therefore used more
sensitive homology-detection methods to ensure that there was no homology in a set of 554
protein domains with resolutions < 2.5 angstrom that they collected from the 3Dee database
of structural domain definitions. Since they wanted to test some algorithms that had already
been tested on RS126, they removed domains that had homologues in RS126 and domains

that failed to.meet some other more stringent requirements. This resulted in CB396. CB513
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Table 3.3: List of Superseded Protein Structures and their Replacements for Data Set CB396

Superseded ID New ID
1AMG 2AMG
1CHB 2CHB
1CTH 2CTH
1CXS 1EU1
1GEP 2GEP
1KIN 1KIM

1TSS 2TSS
2BLT 1XX2
3BCL 4BCL

Table 3.4: List of Superseded Protein Structures and their Replacements for Data Set PSS504

Superseded ID New ID
1R5R 3BJH
1ROT 127K

was made by adding RS126 to CB396 and removing 9 more domains based on more criteria.

CB497 was made by removing the 16 domains in CB513 that are < 30aa in length.

3.2.4 The PSS504 Data Set [66]

In 2006, Gubbi et al. compiled the PSS504 data set using CATH, a hierarchical classification
of protein domain structures published in 1997 by Orengo et al. [66] (The acronym CATH
stands for categories used in the classification system: Class, Architecture, Topology, and
Homologous superfamily [77]). The sequences included in PSS504 all have pairwise sequence
identities (compared to all other respective sequences in the data set) of less than 20%. All
of their respective PDB files have a resolution of at least 2 angstrom and are at least 40aa in

length; has longer sequences and more residues than CB513.

3.2.5 The EVA6 Data Set [78]

EVA was a project started in 2001 for the purpose of benchmarking protein structure
prediction [78]. Limited funding, however, caused the EVA project to be frozen in 2008 [87].

EVA was intended to address not only secondary structure prediction, but also the related
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Table 3.5: List of Superseded Protein Structures and their Replacements for Data Set EVAG

Superseded ID New ID
1KOM 1T23
INNG 1YLI
1UW2 2VRD

1761 1ZAE

problems of comparative modeling, fold recognition/threading, and inter-residue contact
predictions [78]. EVAG6 is one of several different EVA sets that were compiled before the
EVA project was frozen. It was generated by gleaning the latest (at the time) experimentally
determined structures from the PDB website. The secondary-structure labels of each amino
acid in each respective structure were determined using the DSSP program (which labels
secondary structures based on the 3D atomic coordinates found in the PDB files). The extent
to which any proteins in the EVA6 data set share homology with each other, though, is not

immediately available (to our knowledge).

3.2.6 The PLP399, PLP364, and PLP273 Data Sets [79]

These relatively recent data sets were generated by Bent Petersen et al. in order to test
their method for predicting beta-turns. They collected sequences from RCSB using the
protein-culling server PISCES. They initially collected 3,572 protein chains with maximum
pairwise sequence identities of < 25%, resolutions of < 2 angstrom, R-factors of < 0.2, and
sequence lengths ranging from 25-10,000aa [79]. They reduced the initial set of protein chains
to 399 (which make up PLP399) by using a Hobohm1 algorithm to ensure that there was
minimal homology between all pairs of sequences [79]. As a note, no sequences in PLP399
have more than 25% sequence identity with any sequences in the BT426 data set [79]. PLP
364 consists of all protein chains in PLP399 that were deposited in RCSB between 2008 and
2010, inclusive [79]. PLP273 consists of all protein chains in PLP399 that were deposited in

RCSB PDB between 2009 and 2010, inclusive [79].
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Table 3.6: List of Superseded Protein Structures and their Replacements for Data Set BT426

Superseded ID New ID
1GDO 1XFF
51CB 1IGH
1ALO 1VLB
3B5C 1CYO

Table 3.7: List of Superseded Protein Structures and their Replacements for Data Set BT823
Superseded ID New ID
1R5R 3BJH

3.2.7 The BT426 Data Set [80]

This data set was collected by Guruprasad and Rajkumar for the purpose of determining
dependent positional preferences in beta and gamma turns [80]. They selected a set of 426
protein chains that all had at least one beta or gamma turn; there is < 25% pairwise sequence
identity between all chains in the set and chains had a resolution of < 2 angstrom. These

protein chains were collected from the RCSB using the program PDB_SELECT.

3.2.8 The BT823 and BT547 Data Sets [81]

Fuchs and Alix compiled the BT547 and BT823 data sets for the purpose of testing their
method of predicting beta turns [81]. They chose chains that had at least one beta turn and
resolution < 2 angstrom. The extent to which the chains have homology with each other is

not listed.

3.2.9 The SPX Data Set [82]

Cheng et al. compiled the SPX data set for the purposes of testing their method of predicting

disulfide bridges [82]. They assembled the set by first pulling all proteins having at least one

Table 3.8: List of Superseded Protein Structures and their Replacements for Data Set BT547
Superseded 1D New ID
1GDO 1XFF
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intrachain disulfide bridge that were available in the RCSB PDB on May 17, 2004. They then
used UniqueProt to exclude a number of chains such that there would be minimal homology
in the remaining set. The end result was the set of 1,018 protein chains found in the SPX

data set.

3.2.10 The TT1032 Data Set [69]

Thomas Nordahl Petersen et al. compiled the TT1032 by first pulling a large set of proteins
available in the RCSB PDB as of August 1999.They excluded any chains that were less than
30aa in length and any chains that did not have < 2.5 angstrom resolution. They then used
the Hobohm algorithm to reduce intra-set homology between proteins and inter-set homology
with the RS126 data set. They also manually removed transmembrane proteins. The result

was the TT1032 data set.

3.3 Finding and Evaluating a Larger Set of Amino-Acid Properties

A large database of physicochemical and biochemical properties of amino acids has been
compiled by Kawashima et al. [83]. This database actually has three sections: AAindex1 (in-
dividual amino-acid properties), AAindex2 (substitution matrix information), and AAindex3
(statistical protein contact potentials) [83]. For the purposes of this project, we restricted our

focus to AAindex]1—a compilation of 544 amino-acid properties.
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Chapter 4

Primary Experimental Results

4.1 Evaluation of the Relevance of the Amino-Acid Properties

We initially opted to use PLP399 for the feature-selection process. The sequences from
PLP399 with DSSP annotations were gleaned from the ss.txt file. We then wrote a Perl
script to construct an arff file from those sequences. The instances in the arff file consisted of
all successive sliding windows of 13 residues; we chose a sliding-window length of 13 residues
because Hua identified 13 as the optimal sliding-window length [53] and Qian and Sejnowki
also used a window length of 13 in their seminal paper. The letter of each amino acid at each
position 1-13 served as an attribute value, so there were 13 attributes in all. The output
class (i.e., label) for each instance was the three-class secondary structure label (as defined by
Rost and Sander) of the middle residue. We also wanted to predict the structures of residues
that were close to the ends of protein sequences. Since each sliding-window instance’s label
represented the structure of the middle amino acid, there was a need to create a null category
for attributes 1-6 and 8-13 as a space-filler at the edges of each protein. We used an asterisk
to represent this null category. When this scheme was used, the PLP399 set produced an
arff file with 71,098 instances. This file with only letter attributes was meant to serve as our

control.

4.1.1 First Approach to Feature Selection
We downloaded aaindex1.txt (the text file containing the entries for Kawashima’s AAindex1)

and wrote a script to generate an experimental arff file. The experimental file included 13
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letter attributes corresponding to the 13 respective amino acids in each instance. For each
letter attribute, the experimental arff file also added the 544 quantitative properties found
in the aaindexl1.txt file as new numeric attributes. Furthermore, for quantitative properties
that had both positive and negative possible values, the magnitude of the alpha-helical
positive moment, the magnitude of the negative alpha-helical moment, and the magnitude
of the inter-moment angle between them for the sliding window were calculated and added
as additional whole-subsequence attributes. This approach resulted in an arff file that had
71,098 instances and 7,597 attributes.

We initially attempted to perform feature selection using several different pairs of
attribute evaluators and search methods in Weka [84]. However, this approach presented
several problems. First, the arff file was so large that many attribute-evaluator /search-method
pairs could not be tested because they exhausted all memory on the java heap—even when the
heap size was increased to 10 gigabytes. Those that did execute successfully had inordinately
long running times and produced results that were difficult to reconcile with each other. One
evaluator, for example, would rank a large number of whole-subsequence attributes (i.e.,
moment magnitudes and inter-moment angles) before any single-position attributes, while
another evaluator would rank over 100 single-position attributes before any whole-subsequence

attributes.

4.1.2 Second Approach to Feature Selection

Since we believed that the unusually large number of attributes in the experimental arff
file might be related to the drastically different results returned by the different attribute
evaluators, we decided to generate a new set of 54 arff files wherein each file only contained
attributes corresponding to ten amino acid properties (the last file only had attributes
corresponding to four properties, since 544 is not evenly divisible by ten). We then ran Weka’s
ClassifierSubsetEval (using BayesNet as the classifier) on each of the 54 files using ten-fold

cross validation. 235 attributes that were selected in at least nine folds of their respective
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ten-property arff files were identified. A new 235-attribute arff file was then created and
subjected to another round of Weka’s ClassifierSubsetEval (again using BayesNet as the
classifier) using ten-fold cross-validation. After this second round, 78 attributes that were
selected by at least nine folds were identified. A new 78-attribute arff file was then created
and subjected to third round using ten-fold cross-validation. At this point, however, all 78
attributes were selected in at least seven folds. Those 78 attributes are shown in table B of
the appendix. For convenience, table 4.1, an abbreviated version of table B that includes

some of the more surprising and/or interesting attributes that were selected, is included here.

4.1.3 Third Approach to Feature Selection

Even though our second approach to feature selection did yield results that appeared more
intelligible than the results from our first approach, there was lingering doubt about whether
we had actually gathered enough information to ascertain the usefulness of the amino-acid
properties considered—mainly because we had only used a single attribute evaluator and the
results from our first approach had shown that different attribute evaluators often appraised
the same attributes (and hence the properties from which those attributes were derived)
very differently. Furthermore, each of the 54 arff files used in our second approach had been
assigned ten properties based only on the order in which the properties appeared in the
aaindex1.txt file. Hence, it was possible that attributes from some properties might have been
overlooked because they happened to be grouped with attributes from properties that were
even more relevant. In addition, a reference we uncovered in our ongoing research pointed out
that using cross-fold validation can introduce sequence similarities between test and training
sets when both sets contain non-identical instances that are nonetheless derived from the
same protein [61] (e.g., when instances that represent successive sliding windows are put
into both the training and test sets). As a result, there was a possibility that we may have

unwittingly introduced a bias into our results by using cross-fold validation.
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Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977) for amino acid #6
A parameter of charge transfer capability (Charton-Charton, 1983) for amino acid #7

Molecular weight (Fasman, 1976) for amino acid #7

Magnitude of negative moment for 14 A contact number (Nishikawa-Ooi, 1986)

Magnitude of positive moment for ALTLS index (Cornette et al., 1987)

Magnitude of positive moment for Apparent partition energies calculated from Wertz-Scheraga
index (Guy, 1985)

Magnitude of positive moment for HPLC parameter (Parker et al., 1986)

Magnitude of positive moment for Hydration free energy (Robson-Osguthorpe, 1979)
Magnitude of positive moment for Hydration potential (Wolfenden etal., 1981)

Magnitude of negative moment for Mean polarity (Radzicka-Wolfenden, 1988)

Magnitude of positive moment for Normalized composition from animal (Nakashima et al., 1990)

Angle between moments for Normalized composition from fungi and plant (Nakashima et al., 1990)

Angle between moments for Normalized composition of membrane proteins (Nakashima et al,,
1990)

Magnitude of positive moment for Normalized composition of mt-proteins (Nakashima et al., 1990)
Magnitude of positive moment for Principal property value z1 (Wold et al., 1987)

Magnitude of positive moment for Relative partition energies derived by the Bethe approximation
(Miyazawa-Jernigan, 1999)

Magnitude of positive moment for Retention coefficient in HFBA (Browne et al., 1982)

Angle between moments for Side chain hydropathy, uncorrected for solvation (Roseman, 1988)
Angle between moments for Weights for beta-sheet at the window position of 2 (Qian-Sejnowski,
1988)

Table 4.1: These are 20 of the 78 attributes that were selected when the second approach to
feature selection was used.
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As a result, we decided that it would be necessary to (1) evaluate each property
individually, (2) perform evaluations using several different types of dissimilar models, and
(3) use separate training and test sets rather than cross-fold validation. We ultimately chose
to use CB396 as a training set and RS126 as a test set because there is minimal homology
between them and because RS126 provides a test set that is relatively large and commonly
known.

Hence, we decided to make 544 individual arff files—one for each amino-acid property—
and to test each property individually. We used the respective attributes for each property
that had been used in stage 2, but we also added several more attributes for the following
reasons. In the preceding experiments, we had only added attributes that represented what
the moments for each instance would be if the instance was helical. We therefore decided to
add an attribute to represent what the total moment of a property would be if the instance’s
sequence was an extended beta strand. We also added an attribute to represent the total
alpha-helical and beta-sheet moments of the entire subsequence that made up each instance.

In addition, we added six attributes that represented the alpha-helical moments and
six attributes that represented the beta-sheet moments over all six subwindows of size 8
that could be extracted from the each instance’s larger sequence of 13. In this manner, we
hoped to elucidate how each moment was changing over the course of the instance. Two
instances might have identical total moments, for example, but one’s moment may show a
trend of increasing over the course of the instance, while the other might show a trend of
decreasing. The former might mean that a helix is starting, while the latter might mean that
a helix is ending. At the edges of an alpha-helical or beta-sheet sequence, we believed that
the difference could be informative. Like the inter-moment angles, these six attributes are
novel contributions that have not been used in any of the literature (to our knowledge).

Ultimately, each of the 544 arff files had the 44 attributes shown in Table 4.2. We then
used Weka [84] to generate several different machine-learning models on each arff file. We tried

to select a variety of different models, such as a neural-network model (MultiLayerPerceptron),
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a regression model (Logistic), a decision-tree model (J48 and DecisionStump), a nearest-
neighbor model (IBK and IB1), a Bayesian model (BayesNet), a rule-based model (DTNB),
and a homogenous boosting/ensemble model (RandomForest). As a side note, the size of the
input files made it impractical to use some models. A support-vector machine model, for
example, took approximately ten hours to finish running on a single property’s arff file. Since
the SVM model generated did not achieve a high ()3 accuracy and it would have taken months
to create an SVM model for each property using the resources we had at our immediate
disposal, we decided not to generate any additional SVM models.

Even though we wrote a script to automate most of the process of generating these
models, it took several weeks to generate them all. The overall ()3 prediction accuracies that
each model type achieved using the arff files generated with each property are shown in table
C of the appendix. Conditional formatting has been applied in table C to each column so
that values that are higher relative to other values in each respective column appear more
red. For convenience, some of the properties that improved )3 prediction accuracy are shown

below in table 4.3.

4.1.4 Conclusions Regarding the Use of Amino-Acid Properties for Secondary-

Structure Prediction

Not all models types achieved the same gains in ()3 accuracy when using the same property
arff files. This was to be expected. Nevertheless, with the help of the conditional formatting
feature in Excel, trends were clearly visible. The models that achieved the highest ()3
accuracies, such as Logistic and RandomForest, tended to benefit when using the same
property files; a good property file generally improved a good model’s accuracy by 2-3% over
the control file. That being said, not all of the algorithms tested benefitted from the addition
of the new property-based attributes. The RBFNetwork approach, for example, performed
best when using letter attributes only. The NaiveBayes approach also did better with letter

attributes than it did with 536 of the 544 property files.
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Attribute

Possible values as specified in WEKA

Letter for amino acid #1

{ARDNCEOGH,ILKMFPQSTWYVXZ"}

<property hame> for amino acid #1

NUMERIC

Letter for amino acid #2

{ARDNCEOGH,ILKMFPQSTWYVXZ"}

<property hame> for amino acid #2

NUMERIC

Letter for amino acid #3

{ARDNCEOGH,ILKMFPQSTWYVXZ"

<property name> for amino acid #3

NUMERIC

Letter for amino acid #4

{ARDNCEOGH,|ILKMFPQSTWYVXZ}

<property hame> for amino acid #4

NUMERIC

Letter for amino acid #5

{ARDNCEOGH,ILKMFPQSTWYVXZ*}

<property hame> for amino acid #5

NUMERIC

Letter for amino acid #6

{ARDNCEOGHILKMFPQSTWYVXZ*

<property hame> for amino acid #6

NUMERIC

Letter for amino acid #7

{ARDNCEOGH,ILKMFPQSTWYVXZ"

<property hame> for amino acid #7

NUMERIC

Letter for amino acid #3

{ARDNCEOGH,ILKMFPQSTWYVXZ"

<property name> for amino acid #8

NUMERIC

Letter for amino acid #9

{ARDNCEOGH,|ILKMFPQSTWYYXZ"}

<property name> for amino acid #9

NUMERIC

Letter for amino acid #10

{ARDNCEOGH,!ILKMFP.QSTWYVXZ*}

<property name> for amino acid #10

NUMERIC

Letter for amino acid #11

{ARDNCEOGH.ILKMFP.QSTWYVXZ"}

<property name> for amino acid #11

NUMERIC

Letter for amino acid #12

{ARDNCEOGH,ILKMFPQSTWYVXZ*

<property name> for amino acid #12

NUMERIC

Letter for amino acid #13

{ARDNCEOGH,|ILKMFPQSTWYVXZ

<property name> for amino acid #13

NUMERIC

Magnitude of positive alpha-helical moment for <property name> NUMERIC
Magnitude of negative alpha-helical moment for <property hame> NUMERIC
Angle between positive and negative alpha-helical moments for <property name> NUMERIC
Magnitude of total alpha-helical moment for <property name> NUMERIC
Magnitude of total beta-sheet moment for <property name> NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 1 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 2 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 3 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 4 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 5 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 6 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 1 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 2 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 3 NUMERIC
Magnitude of total beta-sheet moment for <property hame> over subwindow 4 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 5 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 6 NUMERIC
Secondary Structure Label for middle amino acid {H,EN}

Table 4.2: These are the 44 attributes that were used in each individual-property arff file.
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Letters only (Control) n/a 62.5021| 60.9603] 60.4232] 59.9065| 61.2514| 59.2833| 61.2473] 60.7143| 53.7395
14 A contact number
(Nishikawa-Ooi, 1986) 0| 65.4215| 62.8875| 63.5312| 63.3877| 61.6287| 59.1315| 58.9183] 59.1151| 58.8486
ALTFT index {Cornette et al., 1987) 18] 65.0443 62.58] 63.4492] 63.0556 61.969] 59.0823| 59.0864 58.742| 57.8235
Bitterness {(Venanzi, 1984) 84| 64.3718| 62.2601] 62.3954] 60.4109] 57.0239] 55.6544 58.455] 57.4832| 56.5934
Buriability (Zhou-Zhou, 2004) 86| 65.0976| 62.4036] 63.4943] 62.6415| 62.2355| 58.2746| 59.9516] 58.2582| 57.3069
Effective partition energy (Miyazawa-
Jernigan, 1985) 109] 65.4543 62,744| 64.1258| 63.3262| 62.9121] 59.7425| 61.1284] 59.8409] 58.1926

HPLC parameter (Parker et al., 1986) 137 65.36] 63.2401] 63.5066| 62.9613] 60.6364] 59.4268 59.193] 59.2792| 58.4755
Hydropathies of amino acid side

chains, pi-values in pH 7.0 (Roseman,

1988) 150] 65.2329| 62.4938 63.318] 61.3621| 60.8414] 59.3858| 58.7051] 58.6518] 56.9173
Hydrophobic parameter pi (Fauchere-
Pliska, 1983) 162| 65.2575| 62.6292| 63.6543] 62.7235 61,928] 60.8619| 59.0085| 59.1151] 58.4509
Hydrophobicity index, 3.0 pH (Cowan-
Whittaker, 1990) 175] 65.2247| 62.6251] 63.2852 61.805| 61.3375| 58.3074| 58.2705| 57.9178| 57.4258

Information value for accessibility;
average fraction 35% (Biou et al., 1988)| 194| 65.565| 62.8465] 63.6871| 63.0105| 61.2637| 60.5995| 58.6887| 59.0495| 58.7092

Interactivity scale obtained from the
contact matrix (Bastolla et al., 2005) 197| 65.1714| 62.9736] 63.3672| 63.1499| 62.1699 57.803] 59.2997| 58.7543| 58.2213

Linker index (Bae et al., 2005) 206] 64.5686| 62.4077| 63.0966] 61.7763| 61.6287 58.824| 58.8445| 59.0905| 57.7251
Long range non-bonded energy per

atom (Oobatake-Ooi, 1977) 218] 64.6876] 62.3216] 63.2647] 62.5595| 62.6169] 59.4883| 61.2145| 58.7133 57.352
Mean polarity (Radzicka-Wolfenden,

1988) 222| 65.3805| 62.8752| 63.7814| 63.1212| 61.8214] 60.3822| 59.2669| 59.3243| 58.3443

Optimized relative partition energies -
method D (Miyazawa-lernigan, 1999) | 344] 65.7372| 62.5841| 63.5969] 63.3508| 60.3945| 60.4232| 58.9347] 59.0372] 58.1557

PRILS index (Cornette et al., 1987) 348| 65.2862| 62.9121] 63.4246] 62.8629] 61.7722| 59.0372 59.2176] 59.2997| 59.2464
Partition energy (Guy, 1985) 352| 65.0689| 62.9244| 63.6707| 62.6907| 61.2637| 59.4391 58.824] 59.6605| 57.7702
Polarity (Grantham, 1974) 356| 65.0484 62.338] 63.3754| 62.8219| 62.8957| 60.8414| 61.3539| 57.7825| 58.5903
Principal property value z1 (Wold et al.,

1987) 364| 65.2657| 63.1909| 63.8183| 62.8055 61.928] 59.9352| 59.0126| 58.7789] 58.3853

Relative partition energies derived by
the Bethe approximation (Miyazawa-

Jernigan, 1999) 383| 65.6265| 63.0023] 63.8962| 63.0597| 61.9444| 60.1935] 59.4596] 59.4965 59,152
Retention coefficient at pH 2 (Guo et

al., 1986) 408| 65.0115| 6€3.1253| 6©2.8219| 62.5144| 60.9603| 59.0782| 58.9429] 59.0331] 57.7989
Side chain interaction parameter

{Krigbaum-Komoriya, 1979) 429 64.421| 617722 €3.0802| 62.5677| 62.2068| 59.1192| ©0.5749] 58.4755| 57.7087
Solvation free energy (Eisenberg-

Mclachlan, 1986) 447 64.7081| 62.7686] 63.2893] 62.3462 61.194 60.333| 58.7789] 59.1561| 57.7866
TOTLS index (Cornette et al., 1987) 459] 65.196 62.744] 63.8716] 63.2196] 61.6451] 58.3402| 59.1069| 59.5252 58.291

Table 4.3: These are Q3 accuracies achieved by various machine-learning models using the
arff files generated using the attributes shown in table 4.2 on selected properties.
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Most of the properties that yielded notable gains for the best models were related to
hydrophobicity, hydrophilicity, hydropathy, polarity, buriability, partition energy, average
number of surrounding residues (e.g., contact number), and structural propensity. These
results are, at the very least, very consistent with the wealth of previous research that
identifies hydrophobicity as a property that is useful for secondary-structure prediction. To
our knowledge, however, a few of these properties, such as buriability and partition energy,
have not been specifically used before to enhance secondary structure prediction. However,
the extent to which synergistic benefit might result from using buriability and partition energy
alongside some of the properties that are already known to improve secondary-structure
prediction is unclear because buriability and partition energy are correlated to some extent
with some of those known properties (e.g., hydrophobicity).

Thus, for the purpose of secondary-structure prediction, it appears that some properties
definitely do matter, while others probably do not. It also appears that the feature set we
developed, which included some novel features like the inter-moment angle and the moments
over subwindows, succeeded to some extent in facilitating better comparisons between

instances with dissimilar sequences.

4.2 Using Majority-Vote Ensembles to Raise Prediction Accuracy

At this point in our research, we decided to investigate whether heterogenous ensemble
models could be used to achieve a better overall ()3 accuracy. Ensemble models that combine
classifiers can often improve prediction performance [85]. Researchers in machine learning
generally agree that ”[d]iversity is a crucial condition for obtaining accurate ensembles” [85].
Some researchers have successfully created diversity in the component classifiers of ensembles
by training each classifier on a different feature set [85]. In light of these considerations, we
recognized that we had a unique opportunity to experiment with ensemble creation because

the process of evaluating each property individually with several different machine-learning

34

www.manaraa.com



algorithms had produced several thousand models that were trained with different feature

sets using different types of classifiers.

4.2.1 First round of Majority-Vote Ensembles

We wrote a Perl program that determines the prediction accuracies (Q3, P, Ps, Peou) of all
majority-vote ensembles of an arbitrary number r of classifiers. These classifiers are selected
from a total repository of n classifiers whose Weka [84] output buffers (including predictions
for each instance) are stored in a given directory. Hence, the total number of non-redundant

majority-vote ensembles of size r taken from a set of n classifiers is

(Z) (4.1)

Given that the number of ensembles therefore increases exponentially, we decided that it
would be best to define a relatively small subset of the models generated for inclusion in our

ensemble experiments.

4.2.1.1 Selecting a Set of Classifiers

Since raising ()3 accuracy was our primary goal, we decided to add 23 of the most successful
(i.e., having relatively high ()3 accuracy) Logistic models to our set of classifiers. In addition,
we added 6 of the most successful RandomForest models, 6 of the most successful BayesNet
models, 2 of the most successful IBK models, and 1 successful DTNB model. Through some
parameter modification and/or use of meta techniques available in Weka [84] (e.g., boosting,
bagging, MultiClassClassifier, and CostSensistiveClassifier), we also teased out a number of
other models with high ()3 accuracies that were added to the classifier set.

In considering which models to include in our set of classifiers, we took note of the fact
that there was a consistent imbalance between P,, Ps, and P,y regardless of the property

considered and regardless of the model type used. P, in particular, was consistently about
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10-20% lower than P, and P, was consistently about 10% lower than P,,;. Hence, in order
to address the imbalance issue, we also included several cost-sensitive versions of the best
models included in the set of classifiers. Each cost-sensitive model was designed to elevate

exactly one of P,, Pg, or P, at the expense of the other two.

4.2.1.2 Summary of Approaches used to Create and Verify Diversity

Summarily, then, there were three approaches we wanted to use to create diversity: (1) using
different types of models, (2) using models that were trained using different properties, and
(3) using models that were trained using cost-sensitivity. Ultimately, the classifier set included
66 models.

Before proceeding, we wanted to apply some method to verify that the three approaches
we had used to create diversity had been effectual to at least some degree. Yule’s Q) statistic
for two classifiers, D; and Dy, is defined as

NllNOO . N01N10
~ N0 + NOLNIO

Qi k (4.2)

where N'! is the number of instances correctly classified by both D; and D, N% is the
number of instances incorrectly classified by both D; and Dy, N is the number of instances
correctly classified by D; and incorrectly classified by D, and N is the number of instances
correctly classified by Dy and incorrectly classified by D; [86]. The expected value of Q; x is
zero for classifiers that are uncorrelated (i.e., independent) [86]. ;) can vary between -1
and 1; classifiers that generally classify the same objects correctly will have positive values of
Qi , while classifiers that generally commit errors on different objects tend to have negative
values of Q;x [86].

To visualize the pattern of diversity in the classifier set, we calculated Yule’s ) statistic
for all combinations of two classifiers selected from the 66 models in the classifier set. After

inspecting the results, as shown in Table D of the appendix, we were satisfied that all three
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approaches for creating diversity had been effectual to some degree. For convenience, an

exemplary portion of table D is shown in table 4.4.

4.2.1.3 Results for First Round of Majority-Vote Ensembles

We then used our Perl program to determine the prediction accuracies of all majority-vote
ensembles consisting of combinations of 3, 5, and 7 classifiers selected from the classifier set.
Since the best individual models included in the classifier set achieved ()3 accuracies of up to
65%, we configured the program to identify any ensembles that achieved a threshold value of
66% Q3 accuracy.

There were 4 ensembles of 3 classifiers (i.e., 0.00874% of the total number of ensembles
of 3) that achieved 66% @3 accuracy. There were 254 ensembles of 5 (i.e., 0.00284% of the
total number of ensembles of 5) and 5,673 ensembles of 7 (i.e., 0.000728% of the total number
of ensembles of 7) that achieved 66% @3 accuracy. Hence, the number of ensembles achieving
greater than 66% ()3 accuracy does increase as the ensemble size increases, but at a rate that
is smaller than the exponential rate at which the search space of possible ensembles increases.

Table 4.5 shows the number of times each classifier was used in ensembles that achieved
66% Q3 accuracy.

We observed an interesting phenomenon in ensembles of size 7: a large number of the
ensembles of size 7 that achieved the threshold accuracy used one or more of the cost-sensitive
models. Furthermore, a number of models that had been used a moderate number of times in
ensembles of size 5 were not used at all in ensembles of size 7 that achieved 66% 3 accuracy.
Intrigued, we decided to further explore the influence and relevance of cost-sensitive models
on majority-vote ensembles by performing a second round of ensemble creation as explained

below.
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AttributeSelected Bagging 15 RBF 7 56.txt 1
BayesNet_109.txt 0.85366 i
BayesNet 351.txt 0.86217| 0.96421 1
BayesNet 356.txt 0.85857| 0.95471| 0.97313 1
BayesNet 53.txt 0.85383| 0.96951| 0.95382] 0.96738 1
BayesNet_56.txt 0.88148| 0.96612| 0.95498] 0.95948]| 0.95871
BayesNet 57.txt 0.88465| 0.97309| 0.96885] 0.96094| 0.96018
CostSensitive(E_1.8) MultiClassClassifier MultiBoost 13 BayesNet 351.txt | 0.80295| 0.94299| 0.97938| 0.9497| 0.9332
CostSensitive(E_2.0) logistic 344 nolnd.txt 0.83331| 0.95526| 0.94343] 0.94238| 0.94726
CostSensitive(E 2.0) Logistic 86.txt 0.81715| 0.94825]| 0.94711] 0.93594] 0.9359
CostSensitive(E_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_ 109.txt 0.7888| 0.98051| 0.93976| 0.92495| 0.94269
CostSensitive(E_2.0) RF_225 5 383.txt 0.80924 0.888| 0.87889| 0.87066] 0.87015
CostSensitive(H_1.8) MultiClassClassifier MultiBoost 13 BayesNet 351.txt | 0.86053 0.931| 0.96817| 0.94328] 0.92583
CostSensitive(H 20)_L0gistic_344_n0|nd.txt 0.86527| 0.91219| 0.90852] 0.90547| 0.91392
CostSensitive(H_2.0) Logistic 86.txt 0.85722| 0.91045]| 0.91282] 0.89968| 0.9038
CostSensitive(H_2.0) MultiClassClassifier MultiBoost 13 BayesNet 109.txt | 0.85942| 0.96642| 0.94083| 0.92666| 0.94482
CostSensitive(N_1.2) Logistic_344_nolnd.txt 0.92591| 0.93407| 0.93157] 0.93034]| 0.93286
CostSensitive(N_1.8) MultiClassClassifier MultiBoost 13 BayesNet 109.txt | 0.90779| 0.95816| 0.91269| 0.89562| 0.91488
CostSensitive(N 1.8) MultiClassClassifier MultiBoost 13 BayesNet 351.txt 0.9099]| 0.90542| 0.95928| 0.92116| 0.89946
CostSensitive(N_2.0) Logistic 86.txt 0.90092| 0.80513| 0.82594] 0.81941]| 0.80324
DTNB_109,txt 0.91072| 0.97042| 0.95044] 0.93948]| 0.94616
IBK_ 60 w_173.txt 0.88786| 0.79201| 0.78874] 0.78493| 0.7975
IBK_60_w_344.txt 0.88468| 0.79218| 0.79019] 0.79835| 0.80282
Logistic_0.txt 0.91813| 0.94949]| 0.94866| 0.94048| 0.94718
Logistic_1.txt 0.9116| 0.94069| 0.93888] 0.93927| 0.95268
Logistic_109.txt 0.91855| 0.95161| 0.95415| 0.93995| 0.9379
Logistic_137.txt 0.91234| 0.94475| 0.95383] 0.94323| 0.93759
Logistic 150.txt 0.9127| 0.94452| 0.9504] 0.94697] 0.94218
Logistic 18.txt 0.91135| 0.94156| 0.94795] 0.93293| 0.93292
Logistic_194.txt 0.92293| 0.9519| 0.95013] 0.94359]| 0.94702
Logistic_195.txt 0.91414| 0.94116| 0.94645] 0.94031| 0.94232
Logistic_196.txt 0.90331| 0.9423| 0.94849| 0.93568| 0.93583
Logistic 197.txt 0.90817| 0.94019| 0.94815] 0.93909] 0.93911
Logistic 222.txt 0.92137| 0.95017] 0.95187] 0.94188]| 0.94461
Logistic_344.txt 0.92043| 0.9495| 0.94622] 0.94487| 0.94874
Logistic_347.txt 0.91248| 0.94381| 0.94453] 0.93619| 0.94144
Logistic 348.txt 0.91136| 0.94267| 0.94538] 0.93655] 0.93923
Logistic_352.txt 0.91736| 0.94703| 0.9487] 0.93625| 0.9344
Logistic_356.txt 0.91201| 0.94073| 0.94515] 0.95122| 0.94468
Logistic_364.txt 0.91068| 0.94386| 0.95623] 0.9467] 0.93544

Table 4.4: These are exemplary pairwise Yule’'s Q) statistics for combinations of two classifiers
selected from the 66 models in the classifier set for the first round of majority-vote ensembles.
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Times used in ensembles | Times used in ensembles | Times usedin
Classifier of 3 of 5 ensembles of 7

AttributeSelected_Bagging 15 RBF_7_56.txt 0 91 459
BayesNet_109.txt 0 163 681
BayesNet_351.txt 0 0 1896
BayesNet_356.txt 0 0 1259
BayesNet_53.txt 0 0 494
BayesNet_56.txt 0 0 3454
BayesNet_57.txt Q 0 371
CostSensitive(E_1.8)_MultiClassClassifier_MultiBoost_13 BayesNet 351.txt 0 44 688
CostSensitive(E_2.0)_Logistic_344_nolnd.txt 0 14 635
CostSensitive(E_2.0)_Logistic_86.txt 0 0 386
CostSensitive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt 0 137 2903
CostSensitive(E_2.0)_RF_225_5_383.txt 0 0 1099
CostSensitive(H_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt Q 0 1512
CostSensitive(H_2.0)_Logistic_344_nolnd.txt 0 0 2712
CostSensitive(H_2.0)_Logistic_86.txt 0 0 456
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 4 83 4691
CostSensitive(N_1.2)_Logistic_344_nolnd.txt 0 0 2457
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 0 0 2164
CostSensitive{N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet 351.txt 0 8 1820
CostSensitive(N_2.0)_Logistic_86.txt 1 58 1789
DTNB_109.txt 3 130 3725
IBK_60_w_173.txt 0 6 681
IBK_60_w_344.txt 0 5 3379
Logistic_0.txt 0 13 0
Logistic_1.txt 1 25 (6]
Logistic_109.txt 0 2 0
Logistic_137.txt 1] 4 0
Logistic_150.txt 0 9 0
Logistic_18.txt 0 3 0
Logistic_194 .txt 0 16 0
Logistic_195.txt Q 9 0
Logistic_196.txt 0 14 0
Logistic_197.txt 0 43 0
Logistic_222.txt 0 8 0
Logistic_344.txt 0 8 0
Logistic_347.txt 1 2 0
Logistic_348.txt 0 1 0
Logistic_352.txt 2 12 0
Logistic_356.txt 0 17 0
Logistic_364.txt 0 7 0
Logistic_383.txt 0 6 0
Logistic_408.txt 0 7 0
Logistic_458.txt 0 14 0
Logistic_459.txt 0 0 0
Logistic_86.txt 0 2 0
Logistic_98.txt 0 14 0
LogitBoost_285_DecisionStump_18.txt 0 0 0
LogitBoost_285_DecisionStump_344.txt 0 0 0
MAX_RF_225_5(63.5148).txt 0 0 0
MLP_H62_53.txt 0 0 0
MultiBoost_10_BayesNet 351.txt 0 0 0
MultiBoost_10_MLP_H62_56.txt 0 0 0
MultiBoost_15 BayesNet 356.txt 0 4 0
MultiClassClassifier_BayesNet_351.txt 0 58 0
MultiClassClassifier_MultiBoost_13_BayesNet_109.txt 0 3 0
MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 0 5 0
MultiClassClassifier_MultiBoost_BayesNet_351.txt 0 44 0
RF 225 10_137.txt 0 9 0
RF_225 5_137.txt 0 23 0
RF_225_5_173.txt 0 78 0
RF_225_5_173nolnd.txt 0 11 0
RF 225 5 364.txt 0 0 0
RF_225_5_383.txt 0 0 0
RF_225_5_408.txt 0 0 0
RF_225 5 419.txt 0 0 0
ZeroR173.txt 0 0 0

Table 4.5: These are the number of times each classifier was used in ensembles that achieved
at least 66% ()3 accuracy in the first round of majority-vote ensembles.
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4.2.2 Second Round of Majority-Vote Ensembles

After seeing the results of the first round of ensemble generation, we wanted to investigate
whether including additional cost-sensitive models in the set of classifiers could help create
additional diversity that would lead to more majority-vote ensembles with higher ()3 accuracy.
Machine-learning literature suggests that helpful diversity can be created by varying model
types, feature sets, and general input parameters (see [85]). In addition, it stands to reason
that ensembles of cost-sensitive models can be expected to improve recognition of a minority
class in imbalanced data sets. However, we have not yet come across any literature that
suggests that including cost-sensitive models and non-cost-sensitive models together in set of
classifiers can lead to ensembles that have greater overall prediction accuracy. Hence, we felt
it was worth doing a second round of ensemble creation with a modified classifier set that

included more cost-sensitive model variations in order to explore this possibility.

4.2.2.1 Selecting a Set of Classifiers Including More Cost-sensitive Models

First, we selected four base models that had achieved relatively high )3 accuracies: Ran-
domForest, BayesNet (paired with MultiBoost), DecisionStump (paired with LogitBoost),
and Logistic (paired with MultiBoost). We added the best versions of these models (e.g.,
those achieving highest Q3 accuracies) to the classifier set. In addition, we derived seven
cost-sensitive models from each base model: three models in which a single class’s prediction
accuracy was elevated (i.e., a model with elevated P,, a model with elevated P, and a model
with elevated P,y ), three models in which two of the three classes’ prediction accuracies were
elevated (i.e., a model with elevated P, and Pg, a model with elevated P, and P.,;, and a
model with elevated Ps and P,,;), and a model in which P,, Ps, and P,,; were constrained
to all be within 2% of each other. In the models that had a single elevated class, we tuned
the cost-sensitivity parameters so that the prediction accuracies for two non-elevated classes
were within 2% of each other. In the models that had two elevated classes, we tuned the

cost-sensitivity parameters so that the prediction accuracies for the two elevated classes were
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within 2% of each other. These cost sensitive models were also added to the classifier set.
Finally, we added an RBFNetwork model, a MultilayerPerceptron Model, an IBK (nearest
neighbor) model, a DTNB (rule-based) model, and an additional boosted DecisionStump
model to the classifier set. Thus, the classifier set included the 37 models in total. The Yule’s
Q statistics for all pairs of classifiers in this second round’s classifier set are shown in table F

of the appendix. For convenience, an exemplary portion of table F is shown in table 4.6.

4.2.2.2 Results for Second Round of Majority-Vote Ensembles

We then used our Perl program to determine the prediction accuracies of all majority-vote
ensembles consisting of combinations of 3, 5, and 7 classifiers selected from the new classifier
set. We again configured the program to identify any ensembles that achieved a threshold
value of 66% @3 accuracy. As was the case with the first round, the number of ensembles
achieving greater than 66% (@3 accuracy increased as the ensemble size increased, but at
a rate that was smaller than the exponential rate at which the search space of possible
ensembles increased.

There were 6 ensembles of 3 classifiers (i.e., 0.0773% of the total number of ensembles
of 3) that achieved 66% (3 accuracy. There were 300 ensembles of 5 (i.e., 0.0688% of the
total number of ensembles of 5) and 5,576 ensembles of 7 (i.e., 0.0542% of the total number
of ensembles of 7) that achieved 66% @3 accuracy. Table 4.7 shows the number of times each
model type was used in ensembles that achieved 66% (@3 accuracy.

Again, cost-sensitive models were used much more frequently in ensembles of size 7
than in ensembles of 5 or 3. In ensembles of 5, however, at least one cost-sensitive model in
which P,, P, and P,,; were constrained to all be within 2% of each other (i.e., an "EVEN”
model) was used in 279 of the 300 ensembles that achieved 66% (3 accuracy. In ensembles
of 7, at least one cost-sensitive EVEN model was used in 4,549 of the 5,576 ensembles that
achieved 66% ()3 accuracy, while at least one cost-sensitive MAX model was used in 4,827 of

the 5,576 ensembles.
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AttributeSelected_Bagging 15 RBF 7 56.txt 1
DTNB_109.txt 0.91072 i
EVEN LogitBoost 285 DecisionStump 173 (63.3877).txt 0.84788| 0.93009 1
EVEN_MultiBoost 13 BayesNet (61.5).txt 0.80013| 0.90961| 0.95008 1
EVEN_MultiBoost 13 Llogistic (63.3).txt 0.83138| 0.92795| 0.98985| 0.95367 il
EVEN_RF 225 5(63.0023).txt 0.83409| 0.88769| 0.92539]| 0.92027| 0.93105 1
IBK_60_w_344.txt 0.88468| 0.87504| 0.76627| 0.70324| 0.75272| 0.77359
LogitBoost 285 DecisionStump 173.txt 0.92599| 0.97005| 0.96477| 0.90413| 0.94973| 0.89099
LogitBoost 285 DecisionStump 344, txt 0.92095| 0.97038| 0.95734| 0.90219| 0.95646| 0.89855
MAX_Logistic_(65.8767).txt 0.92598| 0.96812| 0.92632| 0.88052| 0.93002| 0.87617
MAX_ MultiBoost 13 BayesNet (64.3021).txt 0.89438| 0.96792| 0.93228| 0.96531| 0.92785( 0.90005
MAX_RF_225_5(65.0689).txt 0.91569| 0.92167| 0.86466| 0.85518| 0.86674| 0.92602
MLP_H62_53.txt 0.86771| 0.86709| 0.82096| 0.7636| 0.79745| 0.78982
RAISE_EN logitBoost 285 DecisionStump 173 (70.9).txt 0.73627| 0.79959| 0.92631| 0.87797| 0.92864| 0.85985
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt 0.5533| 0.70567| 0.74073| 0.80871| 0.75692 0.715
RAISE_EN_MultiBoost 13 Logistic (70.2).txt 0.7758| 0.8556] 0.95023| 0.91756| 0.9708| 0.89689
RAISE_EN_RF 225 5(70.2).txt 0.7407| 0.77863| 0.85232| 0.85119| 0.86451| 0.9135
RAISE_E logitBoost 285 DecisionStump_173 (78.3).txt 0.67164| 0.79454| 0.96035| 0.92031| 0.9597| 0.89197
RAISE_E MultiBoost 13 BayesNet (84.4).txt 0.49187| 0.65826| 0.8594| 0.92082| 0.87373| 0.84228
RAISE E MultiBoost 13 Logistic (70.9).txt 0.77077] 0.88894| 0.98188| 0.94886| 0.99617( 0.9239
RAISE_E RF 225 5(86.9).txt 0.45283| 0.57248| 0.81443| 0.82149| 0.8337| 0.86636
RAISE_HE_ LlogitBoost 285 DecisionStump_ 173 (73).txt 0.51367| 0.68962| 0.90988| 0.85524| 0.89178| 0.81634
RAISE_HE MultiBoost 13 BayesNet (71.3).txt 0.49276| 0.69374| 0.85676| 0.91728| 0.86391| 0.81661
RAISE_HE MultiBoost 13 Logistic_(73.6).txt 0.49444| 0.68698| 0.88236| 0.85456| 0.90797 0.8159
RAISE HE RF 225 5(74.4).txt 0.4082| 0.56902| 0.78655| 0.78448| 0.79464| 0.82197
RAISE_HN logitBoost 285 DecisionStump 173 (72.1).txt 0.93087| 0.95765| 0.92598| 0.84088| 0.89445( 0.83228
RAISE_HN_ MultiBoost 13 BayesNet (71.3).txt 0.90153| 0.93643| 0.83036| 0.87345| 0.81571| 0.79908
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0.91333] 0.96682| 0.94664| 0.88922| 0.94798| 0.87804
RAISE_ HN _RF 225 5(74.4).txt 0.89006| 0.87361| 0.73029| 0.6983| 0.71432( 0.78028
RAISE_H_logitBoost 285 DecisionStump 173 (78.1).txt 0.7982| 0.89743] 0.96397| 0.90772| 0.94972| 0.8796
RAISE_H_MultiBoost 13 BayesNet (84.4).txt 0.6967| 0.81835| 0.84558| 0.87085| 0.83605| 0.79527
RAISE H MultiBoost 13 Logistic (86.1).txt 0.72401] 0.83236| 0.88011 0.827| 0.86891| 0.79658
RAISE_H_RF 225 5(91.6).txt 0.58116| 0.66832| 0.71299| 0.68691| 0.69168| 0.70391
RAISE_N_logitBoost 285 DecisionStump_173 (90.7).txt 0.85958| 0.84845| 0.71163| 0.67334| 0.69519| 0.6851
RAISE N MultiBoost 13 BayesNet (85).txt 0.86574| 0.9014| 0.79667| 0.8337| 0.79861| 0.80081
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.8897| 0.90147| 0.77434| 0.75102| 0.78575| 0.75928
RAISE_N_RF_225_5(86).txt 0.87912] 0.86652| 0.77264| 0.76532| 0.77307| 0.83268

Table4:6:0Theserarerexemplary Yule’s Q) statistics for combinations of two classifiers selected

from the 37 models in the classifier set for the second round of majority-vote ensembles.
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Times used
in

Times used in

Times used in

ensembles | ensembles of |ensembles of
Classifier of 3 5 7
AttributeSelected Bagging 15 RBF 7 56.txt 0 39 2866
DTNB_109.txt 1 56 1172
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt 0 21 385
EVEN_ MultiBoost 13 BayesNet (61.5).txt 0 99 1209
EVEN_MultiBoost_13_Logistic_(63.3).txt 0 220 2848
EVEN_RF 225 5(63.0023).txt 1 137 2606
IBK_60_w_344.txt 5 241 4691
LogitBoost_285 DecisionStump_173.txt 0 64 1176
LogitBoost 285 DecisionStump_344.txt 1 128 2027
MAX_Logistic_(65.8767).txt 6 149 4068
MAX_ MultiBoost 13 BayesNet (64.3021).txt 1 20 591
MAX_RF_225_5(65.0689).txt 2 49 1989
MLP_H62 53.txt 1 7 1914
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt 0 12 883
RAISE_EN_MultiBoost 13 BayesNet (71.3).txt 0 11 295
RAISE_EN_MultiBoost 13 _Logistic_(70.2).txt 0 26 646
RAISE_EN_RF_225 5(70.2).txt 0 10 579
RAISE_E_logitBoost 285 DecisionStump 173 (78.3).txt 0 18 438
RAISE_E_MultiBoost_13 BayesNet_(84.4).txt 0 12 214
RAISE_E _MultiBoost 13 Logistic (70.9).txt 0 14 667
RAISE_E_RF_225 5(86.9).txt 0 46 279
RAISE_HE LogitBoost 285 DecisionStump 173 (73).txt 0 121 346
RAISE_HE MultiBoost 13 BayesNet (71.3).txt 0 (0] 407
RAISE_HE_ MultiBoost_13_Logistic_(73.6).txt 0 0 484
RAISE_HE RF_ 225 5(74.4).txt 0 0 1311
RAISE_HN_LogitBoost_285 DecisionStump_173_(72.1).txt 0 0 1432
RAISE_HN MultiBoost 13 BayesNet (71.3).txt 0 0 23
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0 0 429
RAISE_HN_RF 225 5(74.4).txt 0 0 153
RAISE_H_lLogitBoost_285_DecisionStump_173_(78.1).txt 0 0 233
RAISE_ H_MultiBoost 13 BayesNet (84.4).txt 0 0 41
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0 0 83
RAISE_H_RF_225 5(91.6).txt 0 0 128
RAISE_N_LogitBoost 285 DecisionStump_173 (90.7).txt 0 0 558
RAISE_N_MultiBoost_13_ BayesNet_(85).txt 0 0 228
RAISE_N_MultiBoost_13_Logistic (88.9).txt 0 0 588
RAISE_N_RF_225_ 5(86).txt 0 0 1045

Table 4.7: These are the number of times each classifier was used in ensembles that achieved
at least 66% (3 accuracy in the second round of majority-Vote ensembles.
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4.2.3 Conclusions and Possible Directions for Future Research Regarding Majority-

Vote Ensembles that have Diversity Generated from the Three Approaches

Our two rounds of experiments with majority-vote ensembles answered some questions, but
also engendered many new questions and directions for future research that could be pursued
(though they would be beyond the scope of this project). We discuss these issues in turn.

First, both rounds of ensemble experiments seem to suggest that diversity that is
helpful for increasing the overall prediction accuracy of majority-vote ensembles can indeed
be created by using cost-sensitive versions of one or more classifiers. Cost-sensitive classifiers
that are tuned to predict all output classes with similar accuracy seem to be particularly
useful, at least in ensembles of the sizes considered in our experiments. In majority-vote
ensembles using at least 7 classifiers, cost-sensitive classifiers that are tuned to only increase
the prediction accuracies of one or two output classes may also be helpful as well. Hence, it
appears that cost-sensitivity can be leveraged not only for increasing the prediction accuracy
for a single output class in the context of a single classifier, but also for increasing overall
prediction accuracy in the context of majority-vote ensembles.

Second, both rounds of ensemble experiments support the proposition that diversity
can be generated by training classifiers on different feature sets and by using different classifier
models. This is consistent with what was expected, since both of these two approaches are
fairly commonly known methods for creating diversity.

There are, however, a number of questions that could be explored in further research.
For example, though all three approaches succeeded in creating diversity, it is unclear how
much benefit accrues from each approach individually and to what extent the different
approaches have a cumulative synergistic effect. In addition, it would be useful to explore
whether the most successful ensembles follow a pattern that might be exploited so that the
search space of possible majority-vote ensembles can be explored more efficiently. Do most of
the best ensembles, for example, consist of classifiers that meet a baseline overall accuracy?

Does the distribution of pairwise Yule Q statics between classifiers in the best ensembles
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BayesNet | IBK DTNB | RandomForest | NaiveBayes | J48 RBFNetwork | Multilayer | Logistic
Perceptron
99.84% 99.01% | 100% | 100% 99.80% 100% | 99.86% 100% 100%

Table 4.8: ()3 Accuracies of Classifiers Using CB396 Training Set and RS126 Test Set with
True Output Classes of 8 Neighboring Instances Used as Temporal Context Features

follow a specific pattern? Given an ensemble of size n, is there a way to select or generate an
(n + 1) classifier—perhaps using cost-sensitivity—that can be added to the ensemble (or
swapped in) and predictably increase overall prediction accuracy? Can these approaches for
creating diversity somehow be harnessed to create ensembles that achieve high prediction
accuracy while using constituent classifiers that achieve relatively low accuracy? These are
some of the questions that occurred to us. However, in order to avoid expanding the project
scope unreasonably, we decided it was prudent to move forward and explore the relevance of

temporal context nodes rather than drill deeper into the ensemble questions.

4.3 Evaluating the use of Temporal Context Nodes

4.3.1 Relaxation

For a first step, we decided to establish an upper bound of ()3 accuracy that we might expect
to achieve using temporal context nodes by creating test and training sets that included the
true output classes of instances n — 4 through n — 1 and instances n + 1 through n + 4 as
attributes for each instance n. In addition, each instance n had the original 13 amino-acid
letter features. Using CB396 as a training set and RS126 as test set, we created several
different classifiers. The ()3 accuracies of those classifiers are shown in table 4.8.

Since the best models achieved up to 100% @3 accuracy, we were initially very
optimistic. If 100% accuracy was possible when the true secondary structures of an amino
acid’s neighboring amino acids were known, we reasoned that we might be able to achieve
good prediction results by (1) predicting the output classes for the instances in the test set

in a first iteration without using temporal context features, (2) using the predictions from
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Classifier Iteration
0 1 2 3 4

BavesNet 61.2414 061.2227 61.2268 61.2309 61.2309
DTNB 60.4232 60.4232 60.4232 60.4232 60.4232
IBK 60.333 60.5011 60.5298 60.5339 60.5339
J48 53.7395 53.8913 53.8913 53.8913 53.8913
Logistic 62.5021 62.5021 62.5021 62.5021 62.5021
NaiveBayes 61.2473 61.1899 61.1817 61.1858 61.1858
RBFNetwork 60.7143 61.0300 61.0177 61.0300 61.0300
RandomPForest 60.9603 61.2514 61.2514 61.2514 61.2514

Table 4.9: Q)3 Accuracies Achieved in Successive Iterations Using the Relaxation Process

the first iteration as temporal context features for a second iteration, and (3) continuing
to use predictions from previous iterations in successive iterations until the )3 accuracy
relaxed into an asymptotic value. We believed that such a process would likely yield at least
some increase in ()3 because some errors that might occur in the first iterations, such as
predicted alpha-helical sequences interrupted by single-amino-acid beta sheets, would likely
be corrected by a model that considered the structural context provided by temporal context
inputs.

We therefore implemented the relaxation process, as explained above, using several
different model types that were iteratively generated using Weka [84]. The results are shown
in table 4.9.

While the relaxation process resulted in some very small accuracy increases for some
model types, such as IBK and RandomForest, these accuracy increases were an order of
magnitude less than what we had hoped; the relaxation process never succeeded in raising
the (3 accuracy more than three tenths of one percent. Upon examining the predictions
from the zeroth iteration (i.e., the iteration in which only letter attributes were used), we
noted that both correct predictions and incorrect predictions tended to appear in sequences.
Some clusters of consecutive instances in a protein chain would be correctly predicted to be
alpha helices, for example, while other clusters of consecutive instances would be incorrectly

predicted to be alpha helices when they were actually beta sheets. In hindsight, it seemed
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reasonable that clusters of incorrect predictions would limit the usefulness of the relaxation
process because the incorrect predictions would provide an incorrect context. As Minor
demonstrated in 1996, a sequence of up to eleven amino acids can fold into an alpha helix
or a beta sheet depending on context [6]. Hence, a classifier given incorrect context for an
instance might actually be making a prediction that would be correct if that instance was
actually surrounded by the predicted context rather than the true context.

We therefore decided to explore the possibility of whether (03 accuracy improvement
could be achieved in a scheme that only provided a smaller number of context values—
specifically, context values that could be predicted with a higher degree of confidence. We
initially tried to build a prediction-confidence classifier that could predict whether or not
a prediction was correct based on the confidence probabilities provided in Weka output
buffers for some of the secondary-structure-prediction classifiers we had used. However, we
quickly discovered that the prediction-confidence classifier was only able to identify when a
secondary-structure-prediction classifier was making an error with about 60% accuracy. As a

result, we decided to apply a different approach, as follows.

4.3.2 Collaborative Model Using Three High-Precision Classifiers

We generated three different cost-sensitive Logistic classifiers, each tuned to have very high
precision for a single one of the three output classes (at the expense of recall). We then wrote
a script that compared each high-precision classifier’s predictions for each instance in the test
set (the RS126 data set). For each instance, if all three classifiers agreed, the consensus label
was assigned as the predicted label for that instance. If the three classifiers disagreed, but
only one classifier voted for its high-precision label, the high-precision label would be assigned
as the predicted label for that instance. Any other instance on which the classifiers disagreed
was assigned a label of unknown. Using these rules, 33.49% of the instances were assigned
predicted labels, while the remaining instances were given unknown labels. We noted that

the predicted labels were 79.75% accurate. Hence, at the very least, the approach with the
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Training Set Test Set Classifier
Logistic RandomForest
CB396 (=40% unknown) | RS126 (=40°%0 unknown) 78.21% 79.68%
CB396 (none unknown) RS126 (=40% unknown) 75.23% 78.99%

Table 4.10: Q3 Accuracies Achieved Using Training Sets having Different Percentages Tem-
poral Context Features Unknown

three high-specificity models had succeeded in raising Q3 accuracy on the 33% of instances
whose labels were actually predicted.

The assigned labels were then used to generate an arff file that included the predicted
output labels (including the unknown label, where applicable) of instances n —4 through n— 1
and instances n 41 through n + 4 as attributes for each instance n. In addition, each instance
n had the original 13 amino-acid letter features. We were unsure of whether it would be best
to train a model using a training file (CB396) wherein all context labels were known, since
about 66% of the labels used as context attributes were unknowns. As a result, we decided to
generate a training file with a large number of unknown values for context attributes in the
following manner. First, we used a Logistic classifier in Weka using the standard 13-attribute
CB396 file as both the training set and the test set. We then wrote a script that generated
a new CB396 file with the temporal context attributes. Any instance that was incorrectly
predicted was assigned a context label (i.e., for the purposes of the context attributes only)
of unknown, while instances that were correctly predicted were assigned their true labels.
This resulted in a training file wherein just under 40% of the context attributes had unknown
values. We then used the same process to generate an RS126 file wherein about the same
percentage of context labels were unknown. We then trained (1) a first set of logistic and
RandomForest classifiers using the CB396 training set wherein the values for all context
attributes were known and (2) a second set of classifiers using the CB396 training set wherein
there were unknown values for some context attributes. Each classifier in each set was then
run on the RS126 test set wherein there were unknown values for some context attributes.

The results are shown in table 4.10.
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Since both types of classifiers performed better when using the training set that had
unknown values for some context attributes, we chose to use this training set to generate a
model on the test set that had been created using the three high-precision classifiers (the final
test set). We were still cautiously optimistic, since the results suggested that @3 accuracy
could still be increased if a large percentage of context attributes had unknown values.
However, to our disappointment, both a logistic model and a RandomForest model used on
the final test set actually achieved lower Q3 accuracies—57.22% and 60.49%, respectively.
Hence, it appeared that the negative effect that incorrect context values caused may have been
amplified when fewer context values were known, even when a larger percentage of known
context values were correct. We considered trying to repeat the three-classifier approach
using models with even higher precision. In making preparations to do so, we discovered
that we had to push the recall for the N label all the way down to 7% to achieve precision of
92% using the cost-sensitive approach with a Logistic classifier. With our previous attempt,
our efforts had achieved the best precision with the least impact on recall using the N label.
Hence, if the N label’s precision and recall were to be considered upper bounds for the H
and E labels, and if it would be necessary to push the precision for all labels up to 100%,
we realized we would end up with so few known context labels that a good return would be

unlikely.

4.3.3 Conclusions Regarding Temporal Context Attributes and Directions for

Future Research

Ultimately, the approach of using predicted labels for context attributes and trying to relax
them yielded only a very small amount of benefit. However, where true labels are known for
at least some instances (about 60%, at least), it appears that Q)3 accuracy of nearly 80% is
very achievable with fairly standard models. Relaxation and the collaborative three-model
high-precision approach do not appear to be effective ways to discern those true labels, but

other methods beyond the scope of this project might be. In particular, a good multiple-
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sequence alignment could be helpful. Suppose, for example, a newly sequenced protein aligns
well enough with some homologues whose structures are known. If all homologues have
identical secondary structures at 60% of the amino-acid positions in the alignment, then the
newly sequenced protein could be presumed to have those labels at those positions. These
labels could then be used as input for a classifier that uses them for the context features that
we have defined in this project.

Another observation worth noting is that it appears that certain regions in protein
chains tend to have much more predictable secondary structures than others. The results of
our collaborative three-model high-precision approach suggest that about 33% of the instances
in RS126 can be predicted with about 80% Q3 accuracy without using any information about
amino-acid properties or multiple-sequence alignments. Other instances in RS126 are much
more difficult to predict. There are many possible reasons why this might be the case. These
difficult instances might, for example, represent regions that truly could fold into more
than one secondary-structure conformation very easily—and there could even be a possible
biological and evolutionary advantage to such a phenomenon. A gene that can be alternatively
spliced, for example, might be better able to produce different proteins if certain regions are
amenable to folding into both alpha helices and beta sheets. It would also be very interesting
to explore whether multiple chaperone proteins that could all alternatively operate on the
same peptide chain could fold it into proteins with similar primary structures, but different
secondary and tertiary structures (and hence different functions). If this were the case, given
n protein chains and k chaperone proteins, n new proteins could be produced simply by
adding one new chaperone protein and k£ new proteins could be produced by adding one new
protein chain. This might lead to better efficiency with evolution in that a single mutation
could produce many new proteins. That being said, the presence of regions with flexible

secondary structure could also sometimes simply be a random phenomenon of evolution.
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Chapter 5

Conclusion

We spent a great deal of time and effort hoping to find a "holy grail” that would allow
us to exceed the theoretical limit of 70% )3 accuracy posited by Qian and Sejnowski for
single-sequence secondary-structure prediction methods (e.g., methods not using homology
information). While our efforts did not ultimately result in the discovery of a "holy grail,”

we did ultimately make a number of contributions to the field, as explained below.

5.1 Contributions to the Field of Study

First, we have shown that a number of amino-acid properties that have not been used in
previous studies can be used to improve single-sequence (3 prediction accuracy. While some
previous studies have used isolated properties, such as hydrophobicity, we have conducted a
thorough set of experiments exploring the relevance of amino-acid properties to secondary-
structure prediction by creating thousands of models using over 500 different amino-acid
properties. Our experiments demonstrate that classifiers trained using attributes derived from
some of these properties we have identified can increase ()3 accuracy by several percentage
points compared to controls, depending on the classifier type that is used.

Second, we have devised a number of novel ways to derive attributes from properties
that can aid in secondary-structure prediction. Attributes such as the inter-moment angle and
the moments over instance sub-windows have not been used in previous research. However,
when derived and used in the manner developed for this project, these novel attribute types

can form part of an attribute set that enables classifiers of several different types to achieve
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improved single-sequence ()3 prediction accuracy versus controls. Third, we have developed
a novel way to create diversity in a classifier set from which majority-vote ensembles for
single-sequence secondary-structure with improved ()3 prediction accuracy can be assembled.
Our results suggest that at least some synergistic effect can be harnessed by including
classifiers trained using attributes derived from different properties. Furthermore, our results
also suggest that overall prediction accuracy—mnot just prediction accuracy for a single output
class—can be improved by including some cost-sensitive classifiers that have been tuned
to achieve (1) relatively even prediction accuracies for all classes, (2) increased prediction
accuracy for two out of the three output classes, and (3) increased prediction accuracy for
one output class. The diversity created from using cost-sensitive classifiers, when combined
with diversity created by training classifiers using different feature sets and with diversity
created by using classifiers constructed using different algorithms, can help raise ()3 accuracy
by about one percentage point in majority-vote ensembles of 3, 5, or 7.

Fourth, we have shown that the three-class secondary structure of an amino-acid in a
protein can be predicted with near-perfect accuracy, even with very simple models, when
the true labels of the four upstream predecessors and the four downstream successors are
known and used as temporal context attributes. While this observation is not especially
useful for predicting the structures of proteins that lack homologues of known structure, it is
actually very useful for predicting the structures of proteins whose sequences vary from those
of known homologues only at individual positions (e.g., proteins that have single-nucleotide
polymorphisms (SNPs)). Furthermore, we have shown that nearly 80% @3 accuracy can
be achieved when only about 60% of the temporal context attributes are known for a test
set. This shows that high (3 accuracy can be achieved using models that are simpler than
previous models that can achieve comparable )3 accuracy using homology information if
60% of the true amino-acid labels for protein can be ascertained (e.g., by using a multiple
sequence alignment wherein all homologues share a consensus label at 60% of the positions in

the protein). Thus, while we deliberately excluded homology information in our experiments,
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we ironically made a pair of discoveries that are, in this respect, more relevant to models
that incorporate homology information.

Fifth, we have shown that relaxing temporal context attributes used in the manner
we have described can raise (3 accuracy by up to three tenths of a percent, depending on
the model used, in single-sequence prediction methods. While this improvement is an order

of magnitude smaller than what we had initially hoped, it is an improvement nonetheless.

5.2 Possible Directions for Future Work

In our experiments, we generated ARFF files using the same set of attribute types for each
property. However, the results shown in Appendix table A from our second round of feature
selection illustrate that some attribute types may be more relevant for certain properties than
for others. Future work could seek to define which specific attribute types work best with
certain properties with finer granularity. In addition, future work could also explore whether
the same pairs of properties and attribute-types are best for all different types of classifiers.
This may also help boost the prediction accuracy of some of the model types that were
used. The RBFNetwork classifier that was ultimately used in both rounds of our ensemble
experiments, for example, benefitted when a Weka filter (AttributeSelectedClassifier) was
used to exclude consideration of certain attributes. In addition, further work could explore
which properties can yield the most synergistic improvements in )3 prediction accuracy when
used together. It would be interesting to determine whether properties that yield their best
results with dissimilar attribute types are more likely to synergize well with each other.

It would also be interesting to explore the phenomenon how to best leverage cost-
sensitive classifiers in a classifier set in order to achieve further improvements in ()3 prediction
accuracy of majority-vote ensembles. In our experiments, we used a brute-force approach
and were thus only able to test relatively small ensembles. However, more efficient searches
of the space of possible ensembles could likely be developed by using the pairwise Q statistic.

Individual classifiers could be added to an ensemble in a greedy fashion, for example, based
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on some metric that takes their pairwise QQ value with each classifier that is already in the
ensemble and based on their own individual prediction accuracy. Furthermore, perhaps a
cost-sensitive classifier could be custom-tuned to match an existing ensemble’s needs and
added to the ensemble. These are only a few possibilities that could be explored.

Another important direction for future work is to investigate why several more
complicated models, such as the MultilayerPerceptron models and the RandomForest models,
did not achieve accuracy comparable to that of the simpler Logistic models. While we were
thorough in terms of how many properties we investigated, we did not focus on optimizing
model parameters (e.g., learning rate, momentum, number of nodes in each layer, and
number of epochs for the MultilayerPerceptron and number of trees, maximum tree depth,
pruning techniques, etc. for RandomForest) for individual model types. In theory, with
optimal parameters and optimal feature sets, it should be possible to generate versions of

the complicated models that perform at least as well as—and most likely better than—the

simpler Logistic model.
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Appendix A

(Table A)

Letter for amino acid #1

Letter for amino acid #2

Letter for amino acid #3

Letter for amino acid #4

Letter for amino acid #5

Relative preference value at C-cap (Richardson-Richardson, 1988) for amino acid #5
Letter for amino acid #6

Helix initiation parameter at posision i,i+1,i+2 (Finkelstein et al., 1991) for amino acid #6

Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977) for amino acid #6
Weights for coil at the window position of 1 (Qian-Sejnowski, 1988) for amino acid #6

A parameter of charge transfer capability (Charton-Charton, 1983) for amino acid #7
Conformational parameter of beta-structure (Beghin-Dirkx, 1975) for amino acid #7
Conformational parameter of beta-turn (Beghin-Dirkx, 1975) for amino acid #7

Conformational parameter of inner helix (Beghin-Dirkx, 1975) for amino acid #7

Helix initiation parameter at position i,i+1,i+2 (Finkelstein et al., 1991) for amino acid #7
Molecular weight (Fasman, 1976) for amino acid #7

Relative population of conformational state E (Vasquez et al., 1983) for amino acid #7

Weights for coil at the window position of 2 (Qian-Sejnowski, 1988) for amino acid #7

Delta G values for the peptides extrapolated to 0 M urea (O*Neil-DeGrado, 1990) for amino acid #8
Helix initiation parameter at posision i,i+1,i+2 (Finkelstein et al., 1991) for amino acid #8

Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983) for amino acid #8

N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988) for amino acid #8

Relative population of conformational state E (Vasquez et al., 1983) for amino acid #8

Weights for coil at the window position of -3 (Qian-Sejnowski, 1988) for amino acid #8

Letter for amino acid #9

Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988) for amino acid #9
Weights for coil at the window position of 1 (Qian-Sejnowski, 1988) for amino acid #9
Letter for amino acid #10

Weights for beta-sheet at the window position of 4 {Qian-Sejnowski, 1988) for amino acid #10
Letter for amino acid #11

Delta G values for the peptides extrapolated to 0 M urea (O*Neil-DeGrado, 1990) for amino acid #12
Relative preference value at N5 (Richardson-Richardson, 1988) for amino acid #13

Magnitude of negative moment for 14 A contact number (Nishikawa-Ooi, 1986)

Magnitude of positive moment for 8 A contact number (Nishikawa-Ooi, 1980)

Magnitude of negative moment for A parameter defined from the residuals obtained from the best
correlation of the Chou-Fasman parameter of beta-sheet (Charton-Charton, 1983)

Magnitude of positive moment for ALTLS index (Cornette et al., 1987)

Magnitude of positive moment for Apparent partition energies calculated from Wertz-Scheraga
index (Guy, 1985)

Magnitude of negative moment for Apparent partition energies calculated from Wertz-Scheraga
index (Guy, 1985)

Table A.1: (Page 1 of 3) These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Magnitude of positive moment for HPLC parameter (Parker et al., 1986)

Magnitude of negative moment for HPLC parameter (Parker et al., 1986)

Magnitude of positive moment for Helix formation parameters (delta delta G) (O*Neil-DeGrado,
1990)

Magnitude of positive moment for Hydration free energy (Robson-Osguthorpe, 1979)
Magnitude of negative moment for Hydration free energy (Robson-Osguthorpe, 1979)
Magnitude of positive moment for Hydration potential (Wolfenden et al., 1981)

Magnitude of negative moment for Mean polarity (Radzicka-Wolfenden, 1988)

Magnitude of negative moment for Modified Kyte-Doolittle hydrophobicity scale {Juretic et al.,
1998)

Magnitude of negative moment for Normalized average hydrophobicity scales (Cid et al., 1992)

Magnitude of positive moment for Normalized composition from animal (Nakashima et al., 1990)
Magnitude of positive moment for Normalized composition from fungi and plant (Nakashima et al.,
1990)

Magnitude of negative moment for Normalized composition from fungi and plant (Nakashima etal.,
1990)

Angle between moments for Normalized composition from fungi and plant (Nakashima et al., 1990)
Magnitude of negative moment for Normalized composition of membrane proteins (Nakashima et
al., 1990)

Angle between moments for Normalized composition of membrane proteins (Nakashima et al.,
1990)

Magnitude of positive moment for Normalized composition of mt-proteins (Nakashima et al., 1990)

Magnitude of negative moment for Normalized composition of mt-proteins (Nakashima et al., 1990)

Magnitude of positive moment for Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)

Magnitude of negative moment for Optimal matching hydrophaobicity (Sweet-Eisenberg, 1983)
Angle between moments for Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)

Magnitude of positive moment for Principal property value z1 (Wold et al., 1987)
Magnitude of negative moment for Principal property value z1 {Wold et al., 1987)
Magnitude of positive moment for Relative partition energies derived by the Bethe approximation

(Miyazawa-Jernigan, 1999)

Magnitude of negative moment for Relative partition energies derived by the Bethe approximation
(Miyazawa-Jernigan, 1999)

Magnitude of positive moment for Retention coefficient in HFBA (Browne et al., 1982)

Magnitude of positive moment for Side chain hydropathy, uncorrected for solvation (Roseman,
1988)

Angle between moments for Side chain hydropathy, uncorrected for solvation (Roseman, 1988)
Magnitude of positive moment for Solvation free energy (Eisenberg-Mclachlan, 1986)
Magnitude of positive moment for TOTFT index (Cornette et al., 1987)

Table A.2: (Page 2 of 3) These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Magnitude of positive moment for Weights for beta-sheet at the window position of 1 (Qian-
Sejnowski, 1988)

Angle between moments for Weights for beta-sheet at the window position of 2 (Qian-Sejnowski,
1988)

Magnitude of positive moment for Weights for beta-sheet at the window position of 4 (Qian-
Sejnowski, 1988)

Magnitude of negative moment for Weights for coil at the window position of -2 (Qian-Sejnowski,
1988)

Magnitude of positive moment for Weights for coil at the window position of -3 (Qian-Sejnowski,
1988)

Magnitude of negative moment for Weights for coil at the window position of -4 (Qian-Sejnowski,
1988)

Magnitude of positive moment for Weights for coil at the window position of 1 (Qian-Sejnowski,
1988)

Magnitude of negative moment for Weights for coil at the window position of 2 (Qian-Sejnowski,
1988)

Magnitude of negative moment for Weights for coil at the window position of 3 (Qian-Sejnowski,
1988)

Magnitude of positive moment for Weights from the |FH scale (Jacobs-White, 1989)

Angle between moments for Weights from the IFH scale (Jacobs-White, 1989)

Table A.3: (Page 3 of 3)These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Appendix B

(Table B)

Attribute

Possible values as specified in WEKA

Letter for amino acid #1

{ARDN.CEOGHILKMFPQSTWYVXZ"

<property name> for amino acid #1

NUMERIC

Letter for amino acid #2

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #2

NUMERIC

Letter for amino acid #3

{ARDNCEOGHILKMFPQSTWYVXZ"}

<property name> for amino acid #3

NUMERIC

Letter for amino acid #4

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #4

NUMERIC

Letter for amino acid #5

{ARDNCEOGHILKMFPQSTWYVXZ"

<property name> for amino acid #5

NUMERIC

Letter for amino acid #6

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #6

NUMERIC

Letter for amino acid #7

{ARDNCEOGHILKMFPQSTW,YVXZ*}

<property name> for amino acid #7

NUMERIC

Letter for amino acid #8

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #8

NUMERIC

Letter for amino acid #9

{ARDNCEOGHILKMFPQSTWYVXZ*}

<property name> for amino acid #9

NUMERIC

Letter for amino acid #10

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #10

NUMERIC

Letter for amino acid #11

{ARDNCEOGHILKMFPQSTWYVXZ*}

<property name> for amino acid #11

NUMERIC

Letter for amino acid #12

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #12

NUMERIC

Letter for amino acid #13

{ARDNCEOGHILKMFPQSTWYVXZ*

<property name> for amino acid #13

NUMERIC

Magnitude of positive alpha-helical moment for <property name> NUMERIC
Magnitude of negative alpha-helical moment for <property name> NUMERIC
[Angle between positive and negative alpha-helical moments for <property name> NUMERIC
Magnitude of total alpha-helical moment for <property name> NUMERIC
Magnitude of total beta-sheet moment for <property name> NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 1 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 2 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 3 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 4 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 5 NUMERIC
Magnitude of total alpha-helical moment for <property name> over subwindow 6 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 1 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 2 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 3 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 4 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 5 NUMERIC
Magnitude of total beta-sheet moment for <property name> over subwindow 6 NUMERIC
Secondary Structure Label for middle amino acid {H,E.N}

Table B.1: (Page 1 of 1) These are the 44 attributes that were used in each individual-property

arfl file.
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Appendix C

(Table C)

Letters nn?y&{bontm() nfa | 62.5021| 60.9603| 60.4232|  59.9065 53.7395
. d
8 A contact numbe
WM‘@M!@S@ 1
A eter defined from the
2| s2.3462| 59.8737 61.518) 51.6689 | 54.6621| 54.6908
kfansferﬁpahﬂiw (Charton-Charton,
1983) 3| 62.6579] 60.5257| 60.9562| 56.4499| 55.8471| 54.3259) )| 54.0061]
A parameter of charge transfer donor
capability | chmmhamm, 1983) 4| 62.4938] 59.8778] 61.1202| 54.7605 50.4592 53.9159)
[AA composition o ‘mufti- T
spanning proteins (Nakashima»
lehika'ma, 1992) 5| 62.4897| 59.9229|  61.6656 55.293¢ 54.0963
6| 62.3667| 60.2673] 615262 54.6252| 54.0758
7| e2.4938| 61.0218] 613621 ss.auj 55.6503|
8| 62.4979| 60.2755| 61.7763] 55.8512| 53.4525| 53.8462]
9| 62.4405| 60.2837| 61.4608| 5032 54.0471
Nishikawa, 1992) 10| 62.4856] 60.1565| 615508 56.236 ‘ 54371] 53.9036
[AA wx" Ml of multi-
eins (Nakashima-
11
q of single-
§P8(Wmna proteins (Nakashima-
Nishikawa, 1992) 12] 63.9823| 616779| 61.9362] 56.0481
Mc@r—wp&m@n of membrane proteins
a al,, 1990) 13| 62.8711| 603208 615836 54.1988
Nﬂlmhmd al,, 1990) 14] e32114] 609111 616574 55.1214)] 53.8749| 54.2849
AA composition of mt-proteins from
animal (Nakashima et al., 1990) 15| 632114 60.866| 61.8173 56.044 54.2193| 54.2152
63.0269] 60.5503|  61.7189) 55.2526) 54.8425
62.539] 60.1197|  61.3498| 53.7395 | 53.5632
62.5677) 60.5503] 61.5303 36 56.1793]

Table C.1: (Page 1 of 24) These are (03 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Accessibility reduction ratio
{Ponnuswamy et al., 1980) 21| 64.7942| 62.0961 62.9121 62.3011| 62.3134 57.762| 59.7384| 58.1721] 57.3233
Accessible surface area (Radzicka-
Wolfenden, 1988) 22| 62.4774] 60.5421 61.4401 59.4637| 58.2751] 56.8558] 56.1588| 55.7036 56.5975
Activation Gibbs energy of unfolding,
pH7.0 (Yutani et al., 1987) 23| 62.5677| 60.8947 61.7517 58.3976| 58.2295] 53.3869] 51.1399] 52.6119 54.4038
Activation Gibbs energy of unfolding,
pH9.0 (Yutani et al., 1987) 24| 625759| 60.8988] 61.6041] 58.5165| 58537| 53.3705| 51.1563| 52.001| 559948
Alpha helix propensity of position 44 in
T4 lysozyme (Blaber et al., 1993) 25| 62.3954] 60.4437 61.4319 59.0946 54.371| 58.1392] 47.8145| 49.4711 56.454
Alpha-helix indices (Geisow-Roberts,
1980) 26| 62.5677] 60.5339 61.2719 59.3366| 60.1115] 57.6472| 58.7543| 55.9907 56.0522
Alpha-helix indices for alpha-proteins
(Geisow-Roberts, 1980) 27| 62.4692] 60.5831 61.3539 59.4801| 58.3484]| 56,1301| 55.5478 54.74 56.003
Alpha-helix indices for alpha/beta-
proteins (Geisow-Roberts, 1920) 28| 62.5103] £0.8168 61.6123 59.63218| 60.5257| 58.0367| 58.3115| 56.613%| 56.1178
Alpha-helix indices for beta-proteins
{Geisow-Roberts, 1980) 29| 62.5226| 60.0213 61.5508 59.1602| 60.7389] 55.9866| 58.9347| 55.7897 54.002
Alpha-helix propensity derived from
designed sequences (Koehl-Levitt,
1999) 30| 62.5021] 603001 61.4852| 58.1474| 57.8891| 54.3833| 50.8201| 53.2108| 563064
Amino acid composition (Dayhoff et al.,
1978a) 31| s2.5431| e0.1197] 614647 59.0167| 60.5954] 56.0891| 60.2181| 55.4617] 53.678
Amino acid distribution {Jukes et al.,
1975) 32| 62.6251] 60.2222 61.5713 58.8896 60.661] 54.1988] 59.8106| 55.0189] 53.6493
Amphiphilicity index (Mitaku et al.,
2002) a3 62.621| 60.1033 61.3498 58.5534| 54.6457| 54.3054] 57.5324| 54.1332 53.7887
Aperiodic indices (Geisow-Roberts,
1980) 34 63.154] 60.9808 61.641 60.8414| 60.2181] 60.7512] 58.8773| 57.1921 57.9137
Aperiodic indices for alpha-proteins
(Geisow-Roberts, 1980) 35| 62.4323] ©60.7594 61.3047 59.3817| 59.6031] 56.1342 56.946| 54.8097 55.9784
Aperiodic indices for alpha/beta-
proteins (Geisow-Roberts, 1980) 36| 63.2278] 61.2883 61.6205 61.2473| 60.2345 61.071] 59.0085| 57.9506] 58.0121
Aperiodic indices for beta-proteins
(Geisow-Roberts, 1980) 37| 63.4984 61.436 62.0592 61.4688| 60.9931| 59.1397] 59.8573| 56.3474| 57.2372
Apparent partial specific volume (Bull-
Breese, 1974) 38| 63.1048] 51.1202 62.1781 60.9931| 61.1079] 57.3438] 59.3612| 57.2905| 55.6626
Apparent partition energies calculated
from Chothia index (Guy, 1985) 39| 64.4497| 61.8337 62.6825 61.1366| 61.1817] 57.4873| 57.6841| 57.6062 56.8353
Apparent partition energies calculated
from Janin index (Guy, 1985) 40 64.503] 62.0797 62.6251 60.6692| 60.0787 58.619| 56.7533| 56.3515| 56.6713
Apparent partition energies calculated
from Robson-Osguthorpe index (Guy,
1985) 41| 64.4538] 62.4569 62.8916 58.2172| 61.2145] 57.0978] 57.56893| 57.6882 56,1383
Apparent partition energies calculated
from Wertz-Scheraga index (Guy, 1985) 42| 64.8721| 62.2888 62.6907 62.5226| 60.0008| 58.3853] 58.0572| 58.6559| 57.1921
Atom-based hydrophobic moment
(Eisenberg-McLachlan, 1986) 43| 62.7645| 60.2632 61.5713 58.4919| 58.2787 57.721] 54.3259 53.92| 54.4284
Average accessible surface area {Janin
et al., 1978) 44 63.888]| 61.2227 62.174 60.4437| 61.0136] 58.4796| 58.0572| 56.1547| 559291

Table C.2: (Page 2 of 24) These are ()3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Average flexibility indices (Bhaskaran-
Ponnuswamy, 1988) 45| ©3.0679] 61.2145 62.0674 61.3621] 60.9316] 57.0649] 60.1812| 57.3971] 56.3064

Average gain in surrounding
hydrophobicity (Ponnuswamy et al.,
1980) 46| 64.7409| 62.4856 63.564| 62.7153| 62.4036| 59.1151| 61.2309] 57.9014] 57.7579
Average gain ratio in surrounding
hydrophobicity (Pennuswamy et al.,

1980) 47| 64.6629] 62.3544 62.7153 62.6702| 61.9936] 60.0131] 61.0792| 58.6395| 58.0449
Average interactions per side chain

atom (Warme-Morgan, 1978) 48| 63.6502| 61,7927 62.379 60.907| 61.2268] 58,5657| 60.1771| 56.3474] 56.2203
Average internal preferences (Olsen,

1980) 49 64.421| 62.1289 63.0187 61.6| ©61.8624] 58.1639] 58.3853| 57.3192 57.2905
Average membrane preference: AMPO7

(Degli Esposti et al., 1990) 50| 64.5727| 62.3298 62.7071 62.1986| 61.6369 59.599] 58.7379| 58.3607] 57.2413
Average non-bonded energy per atom

{Oobatake-Ooi, 1977) 51| 63.9905] 61.6451 62.8793 61.4113| 61.2063) 58.7092 58.865| 58.3443 56.0071
Average non-bonded energy per

residue (Oobatake-0Ooi, 1977) 52| 62.7604] 60.9152 61.6 59.8573| 60.9029| 57.5734] 60.3494| 55.4043| 55.7487
Average number of surrounding

residues (Ponnuswamy et al., 1980) 53| 64.7819] 62.2437 62.9408 62.379| 62.5431| 60.1402] 61.2514| 58.2048| 57.3356
Average reduced distance for C-alpha

{Meirovitch et al., 1980) 54| 63.9126] ©62.1986 62.8055 62.7153] 61.5016] 60.3412] 60.5667| 58.9962 57.2495
Average reduced distance for C-alpha

(Rackovsky-Scheraga, 1977) 55| 64.0725| 62.0797 62.7153 62.8219| 61.2924 58.988| 60.7963| 59.4063 57.4176
Average reduced distance for side chain

(Meirovitch et al., 1980) 56| 64.4169| 62.1166 62.5021 62.6251 62.42| 60.8455] 62.0715| 59.4432| 57.6472
Average reduced distance for side chain

(Rackovsky-Scheraga, 1977) i 64.421| 61,7763 63.0269 62.8424| 62.6989| 61.6369 61.969] 59.4924| 57.4586

Average relative fractional occurrence
in AO(i) (Rackowsky-Scheraga, 1982) 58| 62.8752| 60.8578 61.7476 60.3083| 80.6897| 56.2203|] 58.7138 55.638]| 54.8097

Average relative fractional occurrence
in AO(i-1) (Rackovsky-Scheraga, 1982) 59| 62.4815] 60.0746 61.7681 59.5334| 60.7389| 55.5109] 57.4955| 54.9287 546293

Average relative fractional occurrence
in AL(i) (Rackovsky-Scheraga, 1982) 60| 62.9408] 60.4601 61.5098 59.5908| 59.9557] 56.3638 59.07| 56.9009 54.002

Average relative fractional occurrence
in AL(i-1) (Rackovsky-Scheraga, 1982) 61| 62.5677| 60.0869 61.0587 57.6882| 57.1552] 54.8507| 51.5827| 53.1983 55.4207

Average relative fractional occurrence
in AR(i) (Rackovsky-Scheraga, 1982) 62| 62.5472 60.0992 61.518 58.8937| 60.5995 57.598| 58.4878| 56.0194 53.8134

Average relative fractional occurrence
in AR(i-1) (Rackovsky-Scheraga, 1982) 63| 62.5923] 60.3617 61.3908 59.64| 59.9598| 56.5237] 57.0239] b56.2408] 55.8225

Average relative fractional occurrence
in EO(i) (Rackovsky-Scheraga, 1982) 64 62.99] ©1.0054 61.5549 60.5913| 60.9808| 57.4545| 59.6031| 54.8302 55.5396

Average relative fractional occurrence
in EO(i-1) (Rackovsky-Scheraga, 1982) 65| 62.9859| 61.0997 61.299 60.2837| ©60.8824] 53.9323 59.927| 56.8968| 54.3464

Average relative fractional occurrence
in EL{i) (Rackovsky-Scheraga, 1982) 66| 62.5144] 60.1935 61.5467 59.9434| 60.6856] 55.6134] 57.8932| 54.2029 55.6995

Table C.3: (Page 3 of 24) These are (3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Average relative fractional occurrence
in EL{i-1) (Rackovsky-Scheraga, 1982) 67| 62.3585] 60.4314 61.3703 58.4345| 58.1515| 56.3105| 54.5022| 54.2849 55.351
Average relative fractional occurrence
in ER(i) (Rackovsky-Scheraga, 1982) 68 62.461| 60.3165 61.5221 57.8809| 59.5047 55.064 53.083| 52.3782 54.5145
Average relative fractional occurrence
in ER(i-1) (Rackovsky-Scheraga, 1982} 69| 62.5185] 60.5954 61.7189 59.64 58.168] 54.8507] 52.4479| 54.4817] 54.2521
Average relative probability of beta-
sheet (Kanehisa-Tsong, 1980) 70| ©63.7937] 61.8788 62.3667 62.1576| 61.2637| 58.3525] 59.8819| 56.0522 55.6503
Average relative probability of helix
(Kanehisa-Tsong, 1980) 71 62.539] 60.4724 61.5549 60.2755| ©60.3247] 57.6431] 58.0736| 57.3356 56.0604
Average relative probability of inner
beta-sheet (Kanehisa-Tsong, 1980) 72| 64.1832] 62.0223 62.3708 61.6656| 61.0628| 57.5939| 58.6559| 56.4581| 55.4283
Average relative probability of inner
helix {(Kanehisa-Tsong, 1980) 73| 62.6702 60.743 61.6533 60.5093| 60.3247| 58.8814| 58.1105| 57.8399| 56.5811
Average side chain orientation angle
(Meirovitch et al., 1980) 74| 64.8516] 62.1863 62.7563 62.4118| 61.6984| 60.1771] 61.0177 59.886| 57.1552
Average surrounding hydrophobicity
{Manavalan-Ponnuswamy, 1978) 75| 64.6753] 61.8911 63.4533 62.58| 62.3257| 58.3607| 61.2842| 58.2336| 57.9752
Average volume of buried residue
(Chothia, 1975) 76| 62.6046] 60.4519 61.6492 59.4514| 60.9193| 57.2044 60.173] 54.5801 56,1957
Average volumes of residues (Pontius
et al., 1996) T 62.58] 60.5257 61.4647 58.9839| 60.7676 57.434] 60.4068| 54.9697] 56.0973
Averaged turn propensities in a
transmembrane helix (Monne et al.,
1999) 78| 64.1914| 61.7968 62.5021 62.4897| 61.4483) 59.7753] 60.1484| 58.5903 56.7082
Beta-coil equilibrium constant (Ptitsyn-
Finkelstein, 1983) 79| 64.0561] 61.7025 62.2683 61.6574] 60.9644] 60.0705] 58.6108| 57.2536| 57.9342
Beta-sheet propensity derived from
designed sequences (Koehl-Levitt,
1999) 80| 63.1417 61.071 62.1453 60.1771| 59.8245| 53.6083| 56.9419| 56.7451] 54.9328
Beta-strand indices (Geisow-Roberts,
1980) 81| 63.2032] 61.8255 61.8214 60.9767 61.112| 57.1716| 58.7753| 56.4048] 55,5888
Beta-strand indices for alpha/beta-
proteins (Geisow-Roberts, 1920) 82| 63.7076| 61.9403 62.2519 61.7107| 61.2186] 59.4637| 60.2468| 58.0244 56.4581
Beta-strand indices for beta-proteins
{Geisow-Roberts, 1980) &3 63.277] 61.4975 61.6615 61.5836| 60.7348] 59.0413] 59.9557| 56.3392 56.3925
Bitterness (Venanzi, 1984) 84| 64.3718] 62.2601 62.3954 60.4109| 57.0239| 55.6544 58.455| 57.4832| 56.5934
Bulkiness (Zimmerman et al., 1968) &5 63.359] 861.5057 62.0264 59.8819| 651.1448 56.331] 59.4637| 58.1105 57.9137
Buriability (Zhou-Zhou, 2004) 86| 65.0976] 62.4036 63.4943 62.6415| 62.2355] 58.2746] 59.9516| 58.2582 57.3068
Composition (Grantham, 1974) 87| 63.3918] ©1.3662 62.0264 60.4847| 61.0587| 57.3479] 60.3484| 58.0162| 57.2208
Composition of amino acids in
anchored proteins (percent) (Cedano et
al., 1997) 88| 62.5677| 60.0869 61.5754 59.517| 60.4109| 56.0768| 58.7871| 55.0435 53.7518
Composition of amino acids in
extracellular proteins (percent) (Cedano
et al., 1997) 89| 62.5513 60.173 61.4606 59.2299| 59.8409| 54.7482] 58.9921| 55.3018 53.9733
Compositionh of amino acids in
intracellular proteins (percent) {Cedano
et al., 1997) 90| 62.5964| 60.39856 61.3211 59.4555 60.255| 55.1911] 58.2289| 55.0353 53.6862

Table C.4: (Page 4 of 24) These are (3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Composition of amino acids in
membrane proteins (percent) (Cedano
etal., 1997) 91| 62.8301| 60.3699 61.1981 59.3038| 60.2058| 54.39586| 57.7087| 54.8712 54.0676
Composition of amino acids in nuclear
proteins (percent) (Cedano et al., 1997) 92| 62.4692| 60.1566 61.6 59.5867| 60.1976| 55.3223] 59.5908| 55.9332 53.961
Conformational parameter of beta-
structure (Beghin-Dirkx, 1975) 93| 63.8306] 61.8829 62.2109 62.3134| 61.0956] 57.7661] 60.0582| 57.6513| 56.4294
Conformational parameter of beta-turn
{Beghin-Dirkx, 1975) 94| 63.1458] 60.56446 61.4647 60.4027] 59.8983| 55.1807| 60.0951| 56.5196| 56,4991
Conformational parameter of inner
helix {Beghin-Dirkx, 1975) 95| 62.8834| 61.0013 61.6041 61.2924| 60.2755| 59.1766] 59.0208] 57.9219 56.5401
Conformational preference for all beta-
strands (Lifson-Sander, 1979) 96| 63.9372] 61.8583 62.6456 61.7722| 61.2555] 58.9716| 59.8532| 57.5406] 57.3356
Conformational preference for
antiparallel beta-strands (Lifson-
Sander, 1979) 97| 63.3959] 61.4688 62.3175 61.0218| 61.0218| 58.,3484| 59.8655| 57.8604| 56,7738
Conformational preference for parallel
beta-strands (Lifson-Sander, 1979) 98| 64.2611| 62.0633 62.3708 61.4196| 60.6118| 57.1593] 57.5078| 55.7815 57.7661

Consensus normalized hydrophoebicity

scale (Eisenberg, 1984) 99 65.032| 62.1494 63.441 61.7107| 61.5918| 59.6072| 58.6436| 57.7825 57557
Correlation coefficient in regression

analysis (Prabhakaran-Ponnuswamy,

1982) 100] 62.4118 60.579 61.3252 59.4145| ©60.5954] 56.1834] 659.9024| 55.2895| 54.3177
Delta G values for the peptides

extrapolated to 0 M urea (O*Neil-
DeGrado, 1990) 101] 62.5226] 60.3535 61.4031 60.0131| 53.6862] 57.9137] 48.9708| 49.7417 56.6385

Dependence of partition coefficient on

ionic strength (Zaslavsky et al., 1982) 102| 62.8793] 61.2637 61.6041 60.1894| 60.3863 56.044] 57.6718| 56.2367] 55.9168
Direction of hydrophobic moment

(Eisenberg-MclLachlan, 1986) 103| 64.8803] 62.4118 63.0474 61.8747] 59.9393] b59.9598] 58.2992| 58.2541] 57.5406
Distance between C-alpha and centroid
of side chain (Levitt, 1976) 104] 62.5882| 60.2468 61.3826 58.4017| 60.6528] 56.2859| 59.6318] 55.2977] 53.7969

Distribution of amino acid residues in
the 18 non-redundant families of

mesophilic proteins (Kumar et al., 2000)| 105| 62.6251| 60.4888 61.4934 58.8199| ©60.4109] 55.6011] 60.4437| 55.2649] 53.9077
Distribution of amino acid residues in

the 18 non-redundant families of
thermophilic proteins (Kumar et al.,
2000} 106 62.662 60.1976 61.3498 58.7338| 60.9152| 55.3387| 60.3658| 55.0353 53,9077

Distribution of amino acid residues in
the alpha-helices in mesophilic proteins
{Kumar et al., 2000) 107 62.539 60.132 61.3744 58.8978| 58.8691] 54.4899] 55.1542| 54.7605 54.7646

Distribution of amino acid residues in
the alpha-helices in thermophilic

proteins (Kumar et al., 2000) 108 62.4487] 60.3781 61.6492 59.2997| 59.3243| 55.8963| 53.8585| 54.4817 54.8466
Effective partition energy (Miyazawa-

Jernigan, 1985) 109] B5.4543 62.744 64.1258 63.3262| 62.9121| 59.7425| 61.1284| 59.8409| 58.1928
Electron-ion interaction potential

(Veljkovic et al., 1985) 110] 62.5677| 60.2345 61.5262 58.3771] 60.9111 56.495| 59.9598| 55.8717] 53.6985

Table C.5: (Page 5 of 24) These are (3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4

73

www.manaraa.com



el
]
= ~
9 i
‘El s — @ S g—-
o £ = . o o ?‘2 S
£ % o £ z = d 3 . o
[ = S O ) (=] o 0 )
sl 2 = = < & g = z 2
1 )
&) £ 8 £ & 2 & = g g s
Electron-ion interaction potential
values {Cosic, 1994) 111] 62.5636] 60.3494 61.5918 58.3812| 60.8578] 56.3638] 59.9516| 55.8594| 54.9328

Energy transter from out to
in(95%buried) (Radzicka-Wolfenden,
1988) 112] 63.9987] 61.4893 61.5016 60.6159| 50.1361| 56.3884] 58.0818 56.413 55.3797
Entire chain compositino of amino acids
in nuclear proteins (percent) (Fukuchi-
Nishikawa, 2001) 113| 62.5226| 59.9311 61.4852 59.2915| 60.4109| 53.4402| 58.0162| 54.0922 54.084

Entire chain composition of amino acids
in extracellular proteins of mesophiles
(percent) (Fukuchi-Nishikawa, 2001) 114] 62.5964 60.538 61.6287 58.7379| ©0.8414| 53.9733] 60.8414| 56.0809 53.4525

Entire chain composition of amino acids
in intracellular proteins of mesophiles
(percent) (Fukuchi-Nishikawa, 2001) 115] 62.6046| 60.0746 61.6574 58.9634 60.62] 53.0138] 59.3981| 55.3141] 54.4684

Entire chain composition of amino acids
in intracellular proteins of thermophiles
(percent) (Fukuchi-Nishikawa, 2001) 116] 62.5349] 60.1648 61.5262 59.0167| 60.6774] 53.6329] 58.2915| 55.2321 53.9569

Entropy of formation (Hutchens, 1970) | 117| 62.6005| 60.2919 61.559 59.3612 60.784| 57.0773] 59.1028| 55.8881 55.5109
Flexibility parameter for no rigid

neighbors (Karplus-Schulz, 1985} 118| 62.9613] £1.6902 62.0264 60.9357| 60.3412| 58.9019| 53.6944| 55.5765 56.495
Flexibility parameter for one rigid
neighbor (Karplus-Schulz, 1985) 119| 63.2155| ©1.6697 62.174 62.1781| 60.4437]| 57.7743] 54.7195| 58.0777] 57.6431
Flexibility parameter for two rigid
neighbors (Karplus-Schulz, 1985) 120 62.539] 61.1366 61.3457 59.8163| 59.1192| 56.0317| 43.7428| 54.2603 56.5073
Fraction of site occupied by water
(Krighaum-Komoriya, 1979) 121| 54.3103] 61.9977 62.0592 61.7968| 61.0833 59.152| 59.7507| 57.7456 56.8394

Free energies of transfer of AcWI-X-LL
peptides from bilayer interface to water

(Wimley-White, 1996) 122] 63.5804] 61.3703 62.2109 60.866| 61.3457 50.029] 59.1438| 57.1675] 55.1747
Free energy change of alpha(Ri) to
alpha(Rh) (Wertz-Scheraga, 1978) 123| 62.5718] ©0.3822 61.4811 58.7133| 59.9311] 54.6129] 56.2941| 55.9291] 53.8052
Free energy change of epsilon(i) to
alpha(Rh) (Wertz-Scheraga, 1978) 124| 63.1417| ©60.3042 61.8296 59.2956| 60.6077| 56.5608| 57.7374 56.864 54.1168
Free energy change of epsilon(i) to
epsilon(ex) (Wertz-Scheraga, 1978) 125| 62.7194] 60.2304 61.4319 59.3325| 60.5421| 54.1373] 55.6093| 54.6293 54.4981

Free energy in alpha-helical
conformation (Munoz-Serrano, 1994) 126 62.42| ©0.8127 61.7804 ©60.1812| 58.1639] 58.3525] 52.6939| 53.8667 56.741
Free energy in alpha-helical region
{Munoz-Serrano, 1994} 127| 62.3749] 60.4232 61.4729 59.7958| 58.7625| 57.2946] 54.5391] 55.3346| 56.3474

Free energy in beta-strand

conformation (Munoz-Serrano, 1994) 128] 633631 61.6246 62.2888 61.4524| ©60.7635| 59.1889| 59.6646| 57.1511 56.782
Free energy in beta-strand region

{Munoz-Serrano, 1994) (1) 543| 62.5062| 60.8332 61.5385 58.988| 56.4499] ©60.1525] 49.6638| 51.8247 56.6344
Free energy in beta-strand region

(Munoz-Serrano, 1994) (2) 129] 62.5144] 60.5626 61.436 58.6108| 56.0768] 56.7164] 49.2537| 50.8652] 56.6918
Free energy of solution in water,

keal/mole (Charton-Charton, 1982) 130| 62.4938] 80.6692 61.4975 59.6728| ©0.4478 57.352| 55.6749| 56.5606 55.105
Frequency of occurrence in beta-bends

{Lewis et al., 1971} 131] 62.6702] 60.3617 61.3703 59.7589| 59.9188] 56.3351] 58.6518| 56.8681 553797

Table C.6: (Page 6 of 24) These are (3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Frequency of the 1st residue in turn
{Chou-Fasman, 1978b) 132| 62.5759] 60.3658 61.1776 59.7671| 860.4724| 57.2782 58.701| 56.9829] 56.5606

Frequency of the 2nd residue in turn
(Chou-Fasman, 1978b)
Frequency of the 3rd residue in turn

-
(s
w
(3]
W
~
w
i)
[
(o))
=
w
N
(oS
=

61.4401 60.5913| 57.4504) 57.7456] 50.4633| 52.8826| 57.3356

(Chou-Fasman, 1978b) 134] 652.8178] 60.8332 61.1571 59.111| B50.4068] 56.1793] 57.9014| 56.1342 55.6298
Frequency of the 4th residue in turn
{Chou-Fasman, 1978b) 135] 62.5513 60.3289 61.5877 58.4468| 61.5649] 54.9656] 54.4325| 52.9605 541742
Graph shape index (Fauchere et al.,
1988) 136| 63.1417| 61.0874 61.5959 59.6113| 60.5216| 54.9738| 58.0331| 56.7779] 55.4084

HPLC parameter (Parker et al., 1986) 137 65.36] 63.2401 63.5066 62.9613] 60.6364] 59.4268 59.193] 59.2792| 58.4755

Heat capacity (Hutchens, 1970) 138 62.621] 60.6856 61.559 59.7507 60.907 57.27| 60.3494 55,31 55.9784
Helix formation parameters (delta delta
G) (O*Neil-DeGrado, 1990) 139] 62.4733] 60.5298 61.7722 59.2135| 53.4525] 57.0732] 47.4824| 51.1522 56.5237

Helix initiation parameter at posision
i,i+1,i+2 (Finkelstein et al., 1991) 140] 62.4774] €0.4601 61,153 58.3976| 52.2675 53.719] 47.7612| 48.2204] 552444

Helix initiation parameter at posision i-
1 (Finkelstein et al., 1991) 141| 62.5021] 60.7717 61.3006 58.8896| 860.1525| 51.8534] 57.6513| 53.3582 54.453

Helix termination parameter at posision
j+1 (Finkelstein et al., 1991) 142| 62.4159] 60.5544 60.948 59.2258| 58.0777| 57.1839] 55.9209] 55.1583 54.658

Helix termination parameter at posision

j-2,j-1,j {Finkelstein et al., 1991) 143| 624774 60.132 61.2227 59.1643| 59.2956| 55.3059| 59.8532| 54.1291 53.6821
Helix-coil equilibrium constant

(Finkelstein-Ptitsyn, 1977) 144| 62.5841] 60.6364 61.358 60.0664|] 59.8163] 59.2505| 58.0654| 56.5852 56.741
Helix-coil equilibrium constant (Ptitsyn-

Finkelstein, 1983) 145 62.703] ©60.8906 61.1571 60.4806| 58.5452| 60.0254] 55.0927| 55.4986 57.1347
Hydration free energy (Robson-

Osguthorpe, 1979) 146| ©64.4579| ©2.4077 62.785 61.9731| 61.1571| 57.4053] 57.7497| 57.2536| 57.4258

Hydration number (Hopfinger, 1971},

Cited by Charton-Charton (1982) 147] 63.4779] 61.2227 61.7558 59.6564| 59.0823] 56.7492] 54.5842| 55.1583] 54.6006
Hydration potential (Wolfenden et al.,
1981) 148 63.888| 61.0915 62.5021 60.6979| 60.3083] 56.5278] 57.0075| 56.4376 55.802

Hydropathies of amino acid side chains,
neutral form (Roseman, 1988) 149] 64.4702 61.8091 63.2401 59.7671| ©60.7758] 57.5816| 58.4386| 58.7338 56.2572

Hydropathies of amino acid side chains,
pi-values in pH 7.0 (Roseman, 1988) 150| 65.2329] 62.4938 63.318 61.3621| 60.8414] 59.3858] 58.7051| b58.6518] 56.9173

Hydropathy index (Kyte-Doolittle, 1982)| 151 ©4.9295| 62.3052 63.2647 62.0633 60.661] 60.5626| 58.4509| 58.2992| 57.0937
Hydropathy scale based on selt-

information values in the two-state
model (16% accessibility) (Naderi-

Manesh et al., 2001) 152| 65.1796] 62.4487 63.0474 62.5554] 60.3124] 59.681] 57.8112] 58.3197] 58.6518
Hydropathy scale based on seli-

information values in the two-state
model (20% accessibility) (Naderi-
Manesh et al., 2001) 153| 65.0156] 62.5005 63.2401 62.3708| 60.1894] 59.2258] 57.4258| 57.9014| 57.3274

Table C.7: (Page 7 of 24) These are (03 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Index of Property
RandomForest 225, 5
IBK 60, 1/

BayesNet

MLP 82, 0.1
NaiveBayes
RBFNetwork

48 0.2,100,3

logistic
DTNB

Hydropathy scale based on selt-
information values in the two-state
model (25% accessibility) (Naderi-

Manesh et al., 2001) 154| ©64.6096] 62.5103 62.8834 62.2806| 60.0664| 57.885] 57.0691| 57.8522] 563146
Hydropathy scale based on self-

information values in the two-state
model (36% accessibility) (Naderi-

Manesh et al., 2001) 155| 63.4984| 61.6902 62.133 60.7553| 61.0382] 57.4135 57.967| 58.4222| 57.4463
Hydropathy scale based on selt-
information values in the two-state
model (5% accessibility) (Naderi-

Manesh et al., 2001) 156] 64.3882] 62.1986 62.8834 62.174] 60.1853| 59.2505] 57.8809| 58.0367| 57.5119
Hydropathy scale based on self-

information values in the two-state
model (50% accessibility) (Naderi-

Manesh et al., 2001) 157] 62.5185] 60.7676 61.5795 58.5252| 59.9967] 57.4053] 56.8271| 57.4996] 56.5811
Hydropathy scale based on selt-

information values in the two-state
model (% accessibility) (Naderi-
Manesh et al., 2001) 158| 85.1427] 62.4241 63.2032 62.0305 60.374 59.886| 57.9957| 58.0654 57.9424

Hydrophilicity scale (Kuhn et al., 1995) | 159] 64.4046] 61.5467 62.6415 61.1243| 61.7599] 58.7051] 659.5785| 56.7902| 57.6431
Hydrophilicity value (Hopp-Woods,
1981) 160| 64.7614| 62.6292 62.6046 61.7927| 60.6159] 59.6277] 58.0449 58.09] 58.8839

Hydrophobic parameter (Levitt, 1976) 161| 64.7696] 62.1781 62.9326 61.4196| 60.6856] 58.5739] 57.4381| 57.7169] 57.4709
Hydrophobic parameter pi (Fauchere-

Pliska, 1983) 162] B65.2575] 62.6292 63.6543 62.7235 61.928| 60.8619] 59.0085] 59.1151] 58.4509
Hydrophobicity (Jones, 1975) 163] 63.5066] 60.9521 62.5677 60.3042] 61.2637] 58.1844] 59.0946| 58.0162] 55.2444

Hydrophobicity (Prabhakaran, 1990) 164] 64.5563| 62.2478 63.1089 61.2473| 60.4724] 60.1279] 57.3192] 57.6759] 58.1967
Hydrophobicity {Zimmerman et al.,

1968) 165| 63.4615] 60.8291 62.2109 60.0951| 61.1079] 58.0121| 58.8158| 56.9337| 55.0189

Hydrophobicity coefficient in RP-HPLC,
C18 with 0.1%TFA/2-PrOH/MeCN/H20

(Wilce et al, 1995) 166| 62.6784] 60.4642 61.4893 50.4063| 59.5662| 54.1783| 55.8922| 54.2685| 54.2152
Hydrophobicity coefficient in RP-HPLC,

C18 with 0.1%TFA/MeCN/H20 (Wilce et
al. 1995) 167| 64.5645 62.1412 62.5636 61.4811| 60.7758] 55.5314| 57.7374 58.414 57.2208
Hydrophobicity coefficient in RP-HPLC,
C4 with 0.1%TFA/MeCN/H20 (Wilce et

al. 1995) 168| 62.3462| 60.08692 61.3744 59.6892| 60.5462| 55.4945] 59.3571| 55.9209] 53.6739
Hydrophobicity coefficient in RP-HPLC,

C8 with 0.1%TFA/MeCN/H20 (Wilce et

al. 1995) 169| 63.8347] 61.8706 62.6538 61.3416| 60.7143| 58.2869]| 57.7087 57.885] 56.4048
Hydrophobicity factor (Goldsack-

Chalifoux;, 1973) 170| 63.5107] ©1.3457 62.4651 60.5585| 61.3949] 56.3515] 59.1233| 56.6016 54.941
Hydrophobicity index (Argos et al.,

1982) 171] 63.5189] 60.9726 62.5677 60.2632| 61.2678] 58.0654] 59.0126| 57.9629 55.1747
Hydrophobicity index (Engelman et al.,

1986) 172| 64.5563] 62.5349 63.0966 61.2432| 60.5339| 60.1935 57.311| 57.6759] 58.4181

Hydrophobicity index (Fasman, 1989) 173] 65.6921] 62.5718 63.9126 62.9121] 61.4565] 60.0869] 58.701| 59.2423] 58.3197
Hydrophobicity index (Wolfenden et al.,

1979) 174] 63.7363] 61.2227 62.3708 60.4109] 60.0992] 55.4617] 56.7943| 56.0522] 55.9825

Table C.8: (Page 8 of 24) These are (03 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Hydrophobicity index, 3.0 pH (Cowan-
Whittaker, 1990} 175| 65.2247] 62.6251 63.2852 61.805| 61.3375| 58.3074| 58.2705| 57.9178| 57.4258

Hydrophobicity scale from native

protein structures (Casari-Sippl, 1992) 176| 64.8434] 62.2765 62.9449 62.0756| 60.2427] 57.9916| 57.2618| 58.1474] 57.1839
Hydrophebicity scales (Ponnuswamy,

1983) 177] 65.1263| 62.8014 63.1704 62.6825| 61.5795| 58.0818| 58.6641| 58.3115 57.8973
Hydrophobicity-related index (Kidera et
al., 1985) 178] 64.9131] 61.7845 63.2114 61.8747| 60.6282 58.599| 57.2782| 57.3438] 55.6421
Hydrostatic pressure asymmetry index,
PAI (Di Giulio, 2005) 179] 62.6005 60.661 61,399 58.7953| 60.3699 56.536] 57.9342| 56.6057] 54.0594

Information measure for C-terminal
helix (Robson-Suzuki, 1976) 180 626743 60.6487 61.6287 59.2751| 56.1096] 56.6057] 49.8442| 52.8908 56.1957

Information measure for C-terminal
turn (Robson-Suzuki, 1976) 181| 62.6046| ©0.2345 61.2596 58.5083| b59.6728] 55.8225| 55.5232| 55.2854| 55.2772

Information measure for N-terminal
helix (Robson-Suzuki, 1976) 182 62.7727] 60.5011 61.3949 59.2792| 59.6277] 55.5888| 55.8799| 56.1875 53.6493

Information measure for N-terminal

turn (Robson-Suzuki, 1976) 183| 62.4692 6560.538 61.1366 60.1607| 59.3161| 53.2721] 55.8348| 56.8312 54.535
Information measure for alpha-helix

(Robson-Suzuki, 1976) 184] b62.4241 60.6938 61.7353 59.9024| ©60.3986| 56.6344| 58.3115| 58.1064| 55.6421
Information measure for coil (Robson-

Suzuki, 1976) 185| 62.8465 60.702 61.8214 60.0172| 59.9475| 57.6513| 57.8317| 57.9793| 56.8681
Information meastre for extended

(Robson-Suzuki, 19786) 186| 63.8716| 62.0797 62.4815 61.4647| 60.8373| 56.7615 57.475| 56.6672|] 56.7123

Information measure for extended

without H-bond (Robson-Suzuki, 1976) | 187| 62.6005 60.333 61.436 59.1807| 59.2669] 56.5319| 54.7851| 55.8553 54,2357
Information measure for loop (Rebson-

Suzuki, 1976) 188 63.195 60.7348 62.0756 61.0259| 61.1694] 57.6267| 60.3165| 58.8527 55.925
Information measure for middle helix

{Robson-Suzuki, 1976) 189| 62.8834 60.62 61.5016 60.5872 57.147 59.599] 51.9272| 55.7569| 576636
Information measure for middle turn

{Robson-Suzuki, 1976) 190| 63.4902| 60.7799 61.8977 60.6569] 61.2432] 58.9675| 60.0254] 58.7215| 56.5729
Information measure for pleated-sheet

(Robson-Suzuki, 1976) 191| 639741 61.9239 62.3093 62.3544| 60.8045] 59.2053] 58.2869| 58.1269 56.495
Information measure for turn (Robson-

Suzuki, 1976) 192 63.277| ©60.8414 61.6369 60.8168| 61.3252] 57.3356| ©60.1689 58.865 55,5519

Information value for accessibility;
average fraction 23% (Biou et al., 1988) | 193] ©5.4625] 62.6702 62.3303 62.3257| ©61.0833| 59.9475| 58.4714| 58.3771] 58.3443

Information value for accessibility;

average fraction 35% (Biou et al., 1988) | 194 65.565| 62.8465 63,6871 63,0105] 61.2637] 60.5995] 58.6887| 59.0495] 58.7092
TRTEractivity scale obtained by

maximizing the mean of correlation
coefficient over pairs of sequences
sharing the TIM barrel fold (Bastolla et
al., 2005) 195| 85.1345] 62.5923 63.031 62.8342| ©1.7599] 59.6154 59.271| 58.8691] 57.7415

Table C.9: (Page 9 of 24) These are (3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Interactivity scale obtained by
maximizing the mean of correlation
coefficient over single-domain globular
proteins (Bastolla et al., 2005) 196| B85.0238] 62.5267 63.5558 62.5144| ©61.8296]| 60.2878] 58.9921| 58.7379] 58.5206

Interactivity scale obtained from the
contact matrix (Bastolla et al., 2005) 197| 65.1714] 62.9736 63.3672 63.1499] 62.1699] 57.803] 59.2997| 58.7543] 58.2213
Intercept in regression analysis
{Prabhakaran-Ponnuswamy, 1982) 198| 62.6374] 60.9152 61.4975 60.3042| 60.6159] 57.9465| 59.3325| 56.9501| 564171

Interior composition of amino acids in
extracellular proteins of mesophiles
{percent) (Fukuchi-Nishikawa, 2001} 199 63.236] 60.5913 61.6697 59.4209| 60.6241| 55.0517] 58.0449| 55.7733| 54.5473

Interior composition of amino acids in
intracellular proteins of mesophiles
{percent) (Fukuchi-Nishikawa, 2001) 200| 63.3754] 60.9931 61.7589 59.722| 60.7143| 54.9328| 57.9998| 56.6549 54.9492

Interior composition of amino acids in
intracellular proteins of thermophiles

{percent) (Fukuchi-Nishikawa, 2001} 201| 63.4697] 61.1284 61.8665 60.0746| ©0.7225] 55.105] 57.3684| 56.1793] 55.0927
Interior composition of amine acids in

nuclear proteins (percent) (Fukuchi-

Nishikawa, 2001) 202| 63.8142 61.559 61.682 60.1648| 60.2632] 57.5652] 57.2905| 55.5191 56.1957
Isoelectric point (Zimmerman et al.,
1968) 203| 62.5636| 60.4027 61.477 59.2176| 60.3165] 54.5924| 56.1055| 54.4571 53.879

Knowledge-based membrane-
propensity scale from 1D_Helix in
MPtopo databases (Punta-Maritan,

2003) 204| 64.9336| 62.6784 63.3138 ©2.6784| 60.4355] 59.5539] 58.7502| 58.1848| 57.7005
Knowledge-based membrane-

propensity scale from 3D_Helix in
MPtopo databases (Punta-Maritan,

2003) 205| 64.9459 62.785 62.89685 62.7317] 61.0997| 59.0782| 58.9675| 59.3161 57.9301
Linker index (Bae et al., 2005) 206| 64.5686| 62.4077 63.0966 61.7763| 61.6287 58.824| 58.8445| 59.0905] 57.7251
Linker propensity from 1-linker dataset

(George-Heringa, 2003) 207| 62.5431 60.5544 61.5836 59.3899| 57.3356] 55.8635] 52.1732| 52.8498 55.5808
Linker propensity from 2-linker dataset

(George-Heringa, 2003) 208| 62.4733 60.54562 61.4729 59.6523 58.824] 57.7169] 53.6042 54.863 56.0645
Linker propensity from 3-linker dataset

(George-Heringa, 2003) 209| 62.4569| 60.3083 61.8829 59.7302| 58.7953| 57.6431| 53.7682| 54.2972 55.6954
Linker propensity from all dataset

(George-Heringa, 2003) 210] 62.5144| 60.3289 61.5139 59.6113| 57.6472| 57.1429] 52.3864| 53.6944 55,0886

Linker propensity from helical
{annotated by DSSP) dataset (George-

Heringa, 2003) 24E 62.539| 80.5872 61.559 59.8696| 60.0418] 57.6472] 57.9793| 56.7164 56.1547
Linker propensity from long dataset

{linker length is greater than 14
residues) (George-Heringa, 2003) 212| 62.5144| 60.7102 61.6041 60.0705| 60.0049 57.393 55.679 55,187 55.2444

Linker propensity from medium dataset
(linker length is between six and 14
residues) (George-Heringa, 2003) 213| 62.4405| 60.6569 61.3867 59.4555| 58.2664] 57.6595] 53.7436| 55.0066 57.4668

Table C.10: (Page 10 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Linker propensity from non-helical
{annotated by DSSP) dataset (George-
Heringa, 2003) 214| 62.5677| 60.2427 61.682 59.0208| 55.0927| 55.3387| 48.9708| 50.2296 55.74456
Linker propensity from small dataset
{linker length is less than six residues)
(George-Heringa, 2003) 215| ©3.7158] 60.9275 62.0305 60.2755] 61.5426 59.476| 60.3412| 57.1675] 55.1542
Linker propensity index (Suyama-
Ohara, 2003) 216| 62.9203 60.62 61.3211 59.5047| 58.8937| 57.7251| 54.0225| 55.2034 54.863
Localized electrical effect (Fauchere et
al., 1988) 217| 62.9408 60.333 61.7352 59.4555| 60.5257| 54.2111) 57.3971| 55.7077 54,0061
Long range non-bonded energy per
atom (Oobatake-Ooi, 1977) 218| b4.6876] 62.3216 63.2647 62.5595| 62.6169] 59.4883| 61.2145| 58.7133 57.352
Loss of Side chain hydropathy by helix
formation (Roseman, 1988) 219| 62.5472| 60.2755 61.3047 58.7707| 60.1976] 56.0768] 59.7056] 55.7405 54.4079
Mean area buried on transfer (Rose et
al., 1985) 220| 63.1212] 61,3088 61.8788 61.1161| 61.1407] 58.1967| 60.8496| 56.3187| 56.3228
Mean fractional area loss {Rose et al.,
1985) 221| 64.9418] 62.3257 63.2565 62.8711| 62.0838| 60.5421] 61.8255| 58.9552| 57.6226
Mean polarity (Radzicka-Wolfenden,
1988) 222| ©653805| 62.8752 63.7814 63.1212| 61.8214| 60.3822] 59.2669| 59.3243| 58.3443

Mean volumes of residues buried in
protein interiors (Harpaz et al., 1994) 223| 62.6989| 60.4478 61.6492 59.2423| 60.9111] 56.1711] 60.4601| 54.8918 56.0727
Melting point {Fasman, 1976) 224| 63.1827| ©0.6405 61.8952 60.9521| 60.9316 58.09] 59.5621| 56.8148 54.494

Membrane preference for cytochrome
b: MPH89 (Degli Esposti et al., 1990) 225| 64.1053] B62.2437 62.4446 61.9895| 61.0259| 56.8886| 58.0285| 57.6226 55.6954
Membrane-buried preference
parameters {Argos et al., 1982) 226| 64.3964 62.133 62.5144 61.2965| 60.5257] 60.2345] 58.0859| 57.8686 57.5611

Modified Kyte-Doolittle hydrophobicity

scale (Juretic et al., 1998) 227| 64.9664] 62.6661 63.1704 62.2109] 61.0382] 59.7343| 58.7543| 58.4181| 57.7907
Molecular weight (Fasman, 1976) 228| 62.6333| 60.6405 61.6984 59.1192| 60.9808| 56.8558] 59.9229| 54.6539| 54.7236
N.m.r. chemical shift of alpha-carbon

(Fauchere et al,, 1988) 229| 62.5718 60.62 61.5426 57.639] 59.6933| 56.6795| 55.1583| 54.8753 56.4745
NNEIG index {Cornette et al., 1987) 230| 64.1627] 62,5103 62.7604 62.3339| 61.3949] 59.3448| 58.9388| 58.3566| 57.6759

Negative charge (Fauchere et al., 1988) | 231]| 62.6087| 60.2591 60.7184 56.9091] 51.9682| 51.3736] 52.2429| 53.0466 53.838
Net charge (Klein et al., 1984) 232| 63.2196 60.091 61.276 59.2217| 53.4361) 53.0507] 55.1286| 55.7528] 54.0922

Normalized average hydrophobicity

scales (Cid et al., 1992) 233| 64.8721)] 62.8178 63.1581 62.6784| 61.9567] 58.9019] 58.7092| 58.5206] 58.1064
Normalized composition from animal

(Nakashima et al., 1990) 234| 63.5476] ©1.0751 62.2724 60.7207| 60.0582] 59.0085] 58.0039] 57.4996| 55.8471
Normalized composition from fungi and

plant (Nakashima et al., 1990} 235 63.277] ©60.9275 61.8583 60.702| 60.2714] 56.8148| 56.6754| 56.0891] 54,6128

Normalized composition of membrane

proteins (Nakashima et al., 1990) 236 64.544| ©61.7927 62.6702 61.4975| 60.3945] 56.5811] 57.4258| 57.0403 55.3961
Normalized composition of mt-proteins
{Nakashima et al., 1990) 237| 63.7117] 61.3908 62.1986 61.0628| 60.0705] 58.6887 58,25] 57.5898 55,4084

Table C.11: (Page 11 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Property

Index of Property
RandomForest 225, 5
IBK 60, 1/

BayesNet

MLP 82, 0.1
NaiveBayes
RBFNetwork

48 0.2,100,3

logistic
DTNB

Normalized tlexibility parameters (B-
values) for each residue surrounded by
none rigid neighbours (Vihinen et al,,

1994) 238] 62.9531] 62.0633 62.1863 61.8132| 60.5544| 58.5042] 49.3029| 56.9214] 57.9055
Normalized tlexibility parameters (B-

values) for each residue surrounded by
one rigid neighbours (Vihinen et al,,

1984) 238| 62.7276] 61.9854 61.9075 62.2191| 59.9434| 59.5088| 42.8653| 53.2065| 57.0732
Normalized tlexibility parameters (B-

values) for each residue surrounded by
two rigid neighbours (Vihinen et al.,
1994) 240 62.6538| 61.2022 62.215 61.276| 59.9229| 57.8153| 40.6757| 50.5618 55.515

Normalized flexibility parameters (B-

values), average (Vihinen et al., 1994) 241| 63.3262] 62.1822 62.4569 62.6497| 61.358] 59.8942] 653.6288] 57.9793] 57.0855
Normalized frequency of C-terminal

beta-sheet (Chou-Fasman, 1978b) 242| 63.6502| 61.8911 62.1043 60.9193| 61.0792]| 58.6313] 59.4883| 57.4627 56.3556
Normalized frequency of C-terminal
helix (Chou-Fasman, 1978b) 243 62.621| 60.4437 61.5959 59.7343| 59.6359| 57.3643] 57.0649| 56.6877| 55.8225

Normalized frequency of C-terminal

non beta region (Chou-Fasman, 1978b) | 244] 62.9408] 60.8168 61.6 60.0705| 59.7712] 58.9757| 57.9711 56.741 58.4058
Normalized frequency of C-terminal

noh helical region (Chou-Fasman,
1978b) 245| 62.6292| 60.6692 61.4196 59.7507| 60.2796| 56.7082| 58.3197| 55.7815 56.1711

Normalized frequency of N-terminal
beta-sheet (Chou-Fasman, 1978b) 246| 63.3549] 61.5344 61.8993 61.5918| 61.3498| 58.7174| 59.2997 58.09] 56.4663

Normalized frequency of N-terminal
helix {Chou-Fasman, 1978b) 247| 62.8055] 60.7922 61.4606 50.9188| 59.968] 55.8963] 54.7072| 55.228] 55.1501

Normalized frequency of N-terminal

noh beta region (Chou-Fasman, 1978b) | 248| 63.6092 61.2801 61.9649 61.6779| 61.1038] 59.7835| 60.2427| 58.8445 58.1269
Normalized frequency of N-terminal

non helical region (Chou-Fasman,

1978h) 249| 62.4815] 60.6979 61.5426 59.4719] 60.3658] 56.8968 59.111] 57.6595 55.7364
Normalized frequency of alpha region

(Maxfield-Scheraga, 1976) 250| 62.8383] 60.6979 61.4196 59.5252 59.476| 56.8435 55.843 55.105] 56.5114
Normalized frequency of alpha-helix

(Burgess et al., 1974) 251] 62.5226] 60.3206 61.641 59.9762| 60.8332| 56.5647] 59.4186] 57.2085| 56.3228
Normalized frequency of alpha-helix

(Chou-Fasman, 1978b) 252| b62.6087] 60.6651 61.4934 60.1648| 60.2878] 57.4012] 58.4427| 57.4094] 56.2039
Normalized frequency of alpha-helix

(Maxfield-Scheraga, 1976) 253| 62.5554| 60.6446 61.3047 60.2181| 60.1279] 58.4796| 58.3402| 57.2864| 56.6549
Normalized frequency of alpha-helix

(Nagano, 1973) 254| 62.5677] 60.6159 61.2514 59.8942| 60.3206| 56.8025| 58.4386| 55.7897 55.9825
Normalized frequency of alpha-helix

(Tanaka-Scheraga, 1977) 255| 62.5103] ©60.5462 61.3744 59.7261| 60.8209] 57.2823] 58.8814| 56.9009] 56.0973
Normalized frequency of alpha-helix

from CF (Palau et al., 1981) 256| 62.5308] 60.6405 61.5508 60.3371| 60.3494] 57.9506| 58.2746| 56.9132] 56.5483
Normalized frequency of alpha-helix

from LG (Palau et al., 1981) 257| 62.6415| 60.3699 61.2432 59.4924| ©60.4437]| 57.2864] 58.6067| 55.3469 55,7405

Normalized frequency of alpha-helixin
all-alpha class (Palau et al., 1981) 258| b62.5267] 60.4642 61.518 59.3243| 59.5334| 56.1465| 54.4202 54.74 54.8589

Table C.12: (Page 12 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Normalized frequency of alpha-helix in
alpha+beta class (Palau et al., 1981) 259| 62.4323| 60.8045 61.4401 59.4063| 60.5175| 56.32869 58.008| 55.9332 55.9045
Normalized frequency of alpha-helix in
alpha/beta class (Palau et al., 1981) 260| 62.4815| 60.1197 60.9398 59.6318| 60.4396| 58.0039] 58.0244| 56.5114 55.5683
Normalized frequency of alpha-helix,
unweighted (Levitt, 1978) 261| 62.6333] 60.6651 61.5508 59.6769 60.456] 57.1675| 58.2828| 56.4089| 56.0686
Normalized frequency of alpha-helix,
with weights (Levitt, 1978) 262 62.58] 60.5749 61.3662 59.8737| 60.3986| 57.3684] 57.9096| 56.4991| 55.9701
Normalized frequency of bata-structure
(Nagano, 1973) 263| 63.6953| 61.8952 62.1863 61.8296| 61.3416| 58.5493| 59.7507| 57.5652 56.9009
Normalized frequency of beta-sheet
(Chou-Fasman, 1978b) 264 63.724| ©61.9649 62.1494 62.1412| 61.5754] 59.6687| 60.2755| 57.6595 56.0727
Normalized frequency of beta-sheet
{Crawford et al., 1973) 265| 63.3836] 61.7558 62.2437 61.7107] 61.2145] 59.3858] 60.0131| 57.6021 56.9788
Normalized frequency of beta-sheet
from CF (Palau et al., 1981) 266| 63.7568 62.092 62.4897 61.887| 61.2719| 59.2792| 60.0459| 57.0239| 56.2736
Normalized frequency of beta-sheet
from LG (Palau et al., 1981) 267| 63.2565| £1.3129 61.764 ©1.0997| 60.7758| 57.6513] 59.8122| 56.7287| 55.0681
Normalized frequency of beta-sheet in
all-beta class (Palau et al., 1981) 268 62.99] 61.2309 61.4852 60.5708] 60.7225 57.229] 58.5616| 55.3469 56.208
Normalized frequency of beta-sheet in
alphatbeta class (Palau et al., 1981) 269| 62.9285| 61.0013 61.9075 61.0669| 60.6036|] 57.1429] 59.3981| 55.7569 54,1578
Normalized frequency of beta-sheet in
alpha/beta class (Palau et al., 1981) 270 63.236| ©1.6943 61.8296 60.8619| 60.6036| 56.9132| 59.1807| 56.5729 54.863
Normalized frequency of beta-sheet,
unweighted (Levitt, 1978) 271| 63.3016| 61.6861 61.8829 61.1858| 60.8373 57.229| 59.4924 56.495 55.4453
Normalized frequency of beta-sheet,
with weights (Levitt, 1978) 272| 63.2729] ©61.4934 61.764 61.0095| 60.7102] 57.3807] 59.1397| 56.3843 56.1916
Normalized frequency of beta-turn
(Chou-Fasman, 1978a) 273| 63.2852| ©60.9644 61.5508 61.1243| 60.5216| 60.3658 59.804| 57.7292| 58.4263
Normalized frequency of beta-turn
(Chou-Fasman, 1978b) 274| 63.6666] ©1.5631 61.7517 62,2232| 61.2186| 61.2309] 60.8373] 58.6149 58.578
Normalized frequency of chain reversal
(Tanaka-Scheraga, 1977) 275| 63.3958] £1.1899 61.641 ©61.7188| 60.7184 60.743] 60.3124| 57.9424| 57.4094
Normalized frequency of chain reversal
D (Tanaka-Scheraga, 1977) 276| 63.1909| 60.9398 62.0756 59.7548| 60.9726| 55.5232| 58.7502| 55.9332 54.7113
Normalized frequency of chain reversal
R (Tanaka-Scheraga, 1977) 277| 62.8957| 61.6861 61.5016 59.9926| 56.2654| 57.2946| 49.2291| 53.3049 56.3515
Normalized frequency of chain reversal
S (Tanaka-Scheraga, 1977) 278| 62.5226] 60.7348 61.7025 58.8281| 60.2714] 57.0855] 56.0932| 55.1747 56.4581
Normalized frequency of coil (Nagano,
1973) 279| 62.6825] ©0.8824 61.1202 60.3617| 60.6036 58.66] 59.6154| 57.0855| 56.4745
Normalized frequency of coil {Tanaka-
Scheraga, 1977) 280| 62.6456] 60.6569 61.5016 57.9096| 58.6846] 56.8763] 50.5864| 49.9877| 54.4284
Normalized frequency of extended
structure (Burgess et al., 1974) 281| ©63.2278] ©61.1694 61.7066 60.1156|] 61.0177] 55.9332| 59.5703| 56.6713 55.4125
Normalized frequency of extended
structure (Maxfield-Scheraga, 1976) 282| 63.2155| 61.1899 61.5508 60.1976] 61.2063] 57.6308] 59.2956| 56.3064 55,4002
Normalized frequency of extended
structure (Tanaka-Scheraga, 1977) 283| 63.2401] 61.2145 61.8337 60.2017] ©60.9644| 56.8558| 60.3124| 56.2531] 54.7277

Table C.13: (Page 13 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Normalized frequency of isolated helix
{Tanaka-Scheraga, 1977} 284| 62.5185] 60.0623 61.4565 58.0203| 59.8983 56.823| 55.8676| 54.2685] 54.1783
Normalized frequency of left-handed
alpha-helix (Maxfield-Scheraga, 1976) 285| 62.6087| 60.0131 61.7763 57.147| 57.2249] 56.9091] 49.6761| 50.7709 54.3956
Normalized frequency of left-handed
helix (Tanaka-Scheraga, 1977) 286| 62.7768| 60.1607 61.559 57.721| 57.0773 56.577| 52.7924 53.801] 54.4243
Normalized frequency of middle helix
(Crawford et al., 1973) 287| 62.5308| 60.5257] 60.9603| 60.3165| 60.2181| 57.4585| 58.4919| 55.7569] 55.1501
Normalized frequency of reverse turn,
unweighted (Levitt, 1978) 288| 63.2811] 61.5139 61.5877 61.0587| 560.0049| 60.7717] 58.3115 56.577 58.0203
Normalized frequency of reverse turn,
with weights (Levitt, 1978) 289| 63.2893] 61.1571 61.559 60.9398| 60.0295| 60.4806| 57.8071 56.864 57.844
Normalized frequency of the 2nd and
3rd residues in turn {Chou-Fasman,
1978b) 290| 63.6051] 61,2719 61.5918 61.5672| 60.8168 60.579] 59.8286| 58.6764] 58.4427
Normalized frequency of turn
(Crawford et al., 1973) 201| s2.7112| e0.8045| 61.6082 60.702| ©0.4273| 57.7948] 59.5375| 56.5852| 55.9045
Normalized frequency of turn from CF
{Palau et al., 1981} 292| 63.0802| 61.0464 61.4975 60.9357| 60.7184| 59.8983| 59.7179] 57.7538 57.5365
Normalized frequency of turn from LG
(Palau et al., 1981) 293| 63.1335| 60.7594 61.4483 60.5995| 60.3453| 58.8773] 58.7174| 57.1183| 56.9706
Normalized frequency of turn in all-
alpha class (Palau et al., 1981) 294| 626169| 60.2878| 61.4893| 58.7748| 80.2058| 54.7072| 57.9588| 55.6954| 55.802
Normalized frequency of turn in all-
beta class (Palau et al., 1981) 295| 62.8014] ©0.9439 61.6902 60.5708| 60.4068| 58.4222| 59.2751| 56.8025 56.1506
Normalized frequency of turn in
alpha+beta class (Palau et al., 1981) 296| 62.9039| 60.56405 61.4606 59.7958| 60.2017| 56.8271] 58.7994| 57.3274] 56.9583
Normalized frequency of turn in
alpha/beta class (Palau et al., 1981) 297 62.621| ©60.4929 61.5385 59.8122| 60.2427] 57.3151] 58.9183| 56.9173 55.8963
Normalized frequency of zeta L
{Maxfield-Scheraga, 1976) 208| 625923 e60.5134] 61.3621| 57.6554| 55.0599| 55.1583] 49.3152| 53.514] 54.043
Normalized frequency of zeta R
(Maxfield-Scheraga, 1976) 299| 62.4692] 60.4724 61.5262 58.6682| 60.4314| 53.2721| 54.6826| 55.0804 53.678
Normalized frequency of zeta R (Tanaka
Scheraga, 1977) 300| 62.5062] 60.1976 61.6041 58.7543 60.62| 53.3582] 58.2258] 54.2398] 54.4776
Normalized hydrophobicity scales for
alpha+beta-proteins (Cid et al., 1992) 301| ©4.9746] 62.7686] 63.1007 62.58| 61.4852] 57.7497| 58.3115] 58.6928] 57.5365
Normalized hydrophobicity scales for
alpha-proteins (Cid et al., 1992) 302| 64.4784] 62.2806 62.7891 62.3831| 61.4647] 58.2131| 58.4099| 58.4427| 57.1306
Normalized hydrophobicity'scales for
alpha/beta-proteins (Cid et al., 1992) 303| 65.1591] 62.7768 62.9695 62.4774| 61.3867| 58.4263] 58.3935| 58.5575| 57.5775
Normalized hydrophobicity scales for
beta-proteins (Cid et al., 1992) 304| 64.6794] 62.6046 63.0269 62.4282 61.358] 59.0905] 58.7133| 58.6682 57.926
Normalized positional residue
frequency at helix termini C" (Aurora-
Rose, 1998) 305| 62.5349] 60.3001 61.2596 58.66] 60.7553| 56.3392] 59.4473| 55.0845 53.6985
Normalized positional residue
frequency at helix termini C"* (Aurora-
Rose, 1998) 306| 62.8055] 1.0956 61.2555 60,2591 57.27| 56.2941 52.657| 53.6903]| 55.8553

Table C.14: (Page 14 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Normalized positional residue
frequency at helix termini C* (Aurora-
Rose, 1998) 307| 62.5964| 60.1566 61.4893 57.0732| 55.3838| 55.6298] 49.5736| 50.3813 54,1127
Normalized positional residue
frequency at helix termini C1 (Aurora-
Rose, 1998) 308| 62.5144| 60.6733 61.3334 59.2381| 60.5831| 57.8317]| 58.8937| 57.7169 56.4991
Normalized positional residue
frequency at helix termini C2 (Aurora-
Rose, 1998) 309| 62.5841] 60.5257 61.4319 60.3247| 60.4027] 58.2951| 59.1438| 58.0162| 56.7287
Normalized positional residue
frequency at helix termini C3 (Aurora-
Rose, 1998) 310 62.5513| 60.7471 61.1612 60.6651| 60.2304| 58.8485| 58.1926 57.844| 57.7374
Normalized positional residue
frequency at helix termini C4 (Aurora-
Rose, 1998) 311| 62.5267] 60.4765 61.5467 60.2222 59.681] 57.1388 57.967| 57.2618] 56.9952
Normalized positional residue
frequency at helix termini C4* (Aurora-
Rose, 1998) 312| 62.6702| 60.1771 60.9726 58.824| 58.2423| 52.6242| 54.8466| 54.3095 54,9205
Normalized positional residue
frequency at helix termini C5 (Aurora-

Rose, 1998) 313| 62.5964| 60.3904 61.5959 59.6933| 60.5585| 58.0326| 58.6518| 57.5652 56.5032
Normalized positional residue

frequency at helix termini Cc (Aurora-

Rose, 1998) 314| 62.5841] 60.3576 61.5098 59.353| 60.4314| 56.3064| 57.1757| 55.2936| 55.9825
Normalized positional residue

frequency at helix termini N" (Aurora-
Rose, 1998) 315| 62.5677| 60.1853 61.2227 59.5744 59.111] 56.0112] 56.6795| 54.6457 53.9979
Normalized positional residue

frequency at helix termini N"* (Aurora-

Rose, 1998) 316| 62.6579| 60.7102 61.2104 59.8901 59.312| 56.6877| 55.6544| 54.8671 55.9989
Normalized positional residue

frequency at helix termini N*{Aurora-
Rose, 1998) 317| 62.3216] ©60.6159 61.3252 59.9188| 60.5052| 56.1752] 58.1392| 55.6216 56.495
Normalized positional residue

frequency at helix termini N1 (Aurora-

Rose, 1998) 318] 62.6497| 60.2386 61.559 59.3202| 60.0705] 55.8225] 52.8211| 52.9482 54.576
Normalized positional residue

frequency at helix termini N2 {Aurora-

Rose, 1998) 319| 62.6538] 60.3453 61.6246 59.1297| 59.7671| 55.0845] 55.8676| 53.5099| 54.1045
Normalized positional residue

frequency at helix termini N3 (Aurora-
Rose, 1998) 320| 62.5554| 60.7266 61.5959 61.0177| ©60.3863]| 58.0654] 58.0531| 57.6677] 56.9665
Normalized positional residue

frequency at helix termini N4 (Aurora-

Rose, 1998) 321 62.703] 60.5995 61.3703 60.8619] 59.9147| 58.5698| 58.3443| 58.1474 56.823
Normalized positional residue

frequency at helix termini N4*{Aurora-

Rose, 1998) 322| 62.6333] 60,6815 61.3334 59.517| 60.5175| 57.7868| 58.2664| 56.5032| 554617
Normalized positional residue

frequency at helix termini N5 (Aurora-
Rose, 1998) 323| 62.3175 60.2591 61.3703 60.0377| 60.3247] 57.3643] 58.0982| 57.5324] 55.8512
Normalized positional residue

frequency at helix termini Nc (Aurora-

Rose, 1998) 324| 62.7932] 60.8578 61.3047 59.8163| 60.2755| 57.1757 58.25] 55.9948] 55.9989
Normalized relative frequency of alpha-
helix {Isogai et al., 1980) 325| 62.4856] 60.6651 61.4319 60.2919] ©60.2673] 57.5324] 58.1639| 57.9096] 55.7405

Table C.15: (Page 15 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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61.4113 60.2755| 57.0773] 58.4591| 49.9754| 54.0635| 584017

S (Isogai et al., 1980) 328| 62.6005 60.4437 61.4524 58.6846| 59.5867| 56.4007| 56.2777 54.74 54.8589
Normalized relative frequency of coil

{Isogai et al., 1980) 329| 62.5103 60.3822 61.4483 57.4176| 58.0449 56.577] 51.2711 50.857 54.9615
Normalized relative frequency of

double bend (Isogai et al., 1980} 330] 62.8137] 60.5831 61.6205 59.0003| 60.0705] 54.0184] 57.0157| 55.1665| 53.8913

Normalized relative frequency of

extended structure (Isogai et al., 1980) | 331| 63.0556| 61.2842 61.5344 59.8737| 60.5872]| 56.0973] 59.1971| 55.7569 55.0312
Normalized relative frequency of helix

end (Isogai et al., 1980) 332| 62.4774 60.456 61.2924 58.8896| 59.2176| 56.3556| 55.2116| 54.1578 55.5232
Normalized van der Waals volume

(Fauchere et al,, 1988) 333| 62.5513 60.4396 61.5754 59.0085 60.948| 55.3756] 60.5995| 55.5314 56.085
Number of full nonbonding orbitals

(Fauchere et al., 1988) 334| 63.4615| 60.8168 61.6 59.5211| 57.6759| 55.5683| 57.0567| 56.3761] 54.4448
Number of hydrogen bond donors

(Fauchere et al., 1988) 335 63.523| ©60.6774 61.9116 59.8081| 57.9834| 53.3008] 57.5078| 55.5642| 54.4817
Optical rotation (Fasman, 1976) 336| 62.5062 60.1976 61.7066 58.7584| 56.4376| 54.3792| 49.9508| 52.4848 54.7277
Optimal matching hydrophobicity

(Sweet-Eisenberg, 1983) 337| 65.0279] 62.9613 63.3836 62.9244| ©61.4278] 59.0946| 59.0085| 58.9265 57.6841

Optimized average non-bonded energy
peratom (Qobatake et al., 1985) 338| 62.5964]| 60.7963 61.6615 59.9762| 860.4724| 55.1624| 58.4508| 56.2777| 54.9123
Optimized beta-structure-coil

equilibrium constant (Oobatake et al.,

1985) 339| 63.4984| ©61.2063 62.0428 60.9234| 61.1448| 57.4955| 59.0331| 56.6467| 56.4253
Optimized propensity to form reverse
turn (Oobatake et al., 1985) 340 62.7276] 60.9111 61.7312 59.6359| 60.9439] 55.7364| 60.0541| 56.6836 55.72

Optimized relative partition energies -
method A (Miyazawa-Jernigan, 1999) 341| 65.6101] 62.9367 63.5845 63.1622| 61.5713] 60.1689] 59.5703] 59.5416] 58.3607

Optimized relative partition energies -
method B (Miyazawa-lernigan, 1999) 342| 65.5199] 62.7563 63.5294 63.4615| 61.2432]| 559.8491| 58.9183| 59.6482| 58.7461

Optimized relative partition energies -
method C (Miyazawa-Jernigan, 1999) 343| 65.5978| 62.8793 63.8552 63.2975| 61.6205] 60.0746] 58.8158| 59.1561 582131

Optimized relative partition energies -

method D (Miyazawa-Jernigan, 1999) 344| 65.7372] 62.5841 63.5969 63.3508] 60.3945] 60.4232] 58.9347| 59.0372] 58.1557
Optimized side chain interaction

parameter (Oobatake et al., 1985) 345| 62.7727| 60.8988 61.5426 59.6605| 61.1448| 56.7246] 59.2053| 56.4991 54,8533
Optimized transfer energy parameter

(Oobatake et al., 1985) 346| 62.9818] 60.6528 61.6369 59.5047| 59.8778] 53.4197] 55.9004| 55.6544 54.2603
PRIFT index (Cornette et al., 1987) 347| 65.2083] 62.6989 62.3221 62.6497| 61.2801] 59.5908] 58.9962| 58.9101 58.824
PRILS index (Cornette et al., 1987) 348| 65.2862| 629121 63.4246 62.8629| 61.7722| 55.0372| 5%.2176| 59.2997| 59.24864
Partial specific volume (Cohn-Edsall,

1943) 349| 63.3098] 61.0259 62.1166 60.8168| 61.2924] 56.8517] 60.5667| 57.1552 55.4781
Partition coefficient (Garel et al., 1973) | 350 63.4533| 61.5672 62.2724 59.6974| 61.1858] 55.5683] b59.5293| 54.4161 58.25

Partition coefficient (Pliska et al., 1981) | 351] ©4.8844] 62.1658 63.5353 62.4733 63,236 60.173] 62.3339| 58.5739] 57.8153

Table C.16: (Page 16 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Partition energy (Guy, 1985} 352| 65.0689] 62.9244 63,6707 62.6907| 61.2637] 59.4391 58.824| 59.6605 57.7702
Percentage of buried residues {(Janin et
al., 1978) 353| 64.4538] 62.0961 62.908 61.6287| 60.9726] 60.3617] 58.4304| 57.5037] 55.6749
Percentage of exposed residues (Janin
et al., 1978) 354| 63.9577| ©61.0464 61.5057 60.8373 60.333] 58.291 57.639| 56.3474 55.3428
Polar requirement (Woese, 1973} 355| 64.2529] 62.1658 62.9203 61.7025| 61.7681] 60.3822| 60.0336| 56.8722| 58.0326
Polarity (Grantham, 1974) 356| 65.0484 62.338 63.3754 62.8219| 62.8957] 60.8414] 61.3539] 57.7825 58.5903
Polarity (Zimmerman et al., 1968) 357| 63.5681| ©61.1448 61.9362 57.2864| 59.0577] 53.0835] 56.7738| 55.2198 54,2849
Polarizability parameter (Charton-
Charton, 1982) 358 62.58] 60.6077 61.7189 59.3489| 60.8947| 56.0809 60.825| 56.0973 56.167

Positive charge (Fauchere et al., 1988) | 359| 62.5964] 60.0541 61,071 55.7979] 53.6985 51.308] 56.9993| 53.7805] 53.7805

Principal component | (Sneath, 1966) 360 62.949 60.989 61.4893 60.173| 60.2468| 57.5898| 57.8604| 55.7774| 56.1629

Principal component Il (Sneath, 1966) 361| 62.8916| 60.8045 61.3703 59.2997| 59.7179] 57.1183] 56.4827| 56.9911] 55.6503

Principal component |ll (Sneath, 1966) | 362| 62.6989] 60.5339 61.6533 59.4473| 60.4888| 52.2552| 57.6472| 55.6667| 54.1045

Principal component IV (Sneath, 1966) | 363| 62.5677| 60.1484 61.5672 58.3484| ©0.6487| 52.5627| 583935| 56.167] 54.4448
Principal property value z1 (Wold et al,,

1987) 364| 65.2657| 63.1809| 63.8183 62.8055 61.928| 59.8352| 59.0126| 58.7788] 58.3853
Principal property value z2 (Wold et al.,,
1987) 365| 62.5021] 59.9926 61.5713 58.2787] 58.6564] 53.8913 53.92] 55.0353 543218
Principal property value z2 (Wold et al,,
1987) 366| 62.4487| 60.3412 61.5672 59.8901| ©60.7348| 56.3597| 57.6718| 57.2331 55,2526

Propensity of amine acids within pi-

helices (Fodje-Al-Karadaghi, 2002) 367| 62.8916] 60.8168 61.805 60.5257| 60.4519] 57.6062| 57.6882| 55.7692| 56.3556
Propensity to be buiried inside {Wertz-

Scheraga, 1978) 368| 64.9172] 62.1453 63.277 62.8875| 62.2888| 58.5903| 60.7676| 58.3279] 57.3274
Proportion of residues 100% buried

{Chothia, 1976) 369| 63.6174| 60.9726 61.9854 60.0869| 59.3817] 56.6508] 56.6958| 56.1424 54.7605
Proportion of residues 95% buried

{Chothia, 1976) 370| 64.7327] 62.1084 62.8465 61.6656| 60.9931] 59.7015] 58.4427| 58.0121 56.5483
RF rank (Zimmerman et al., 1968) 371| 64.5891] 61.8173 63.0187 62.297| 62.1822| 58.9593 59.722| 58.5821] 55.9948

RF value in high salt chromatography

{Weber-Lacey, 1978) 372| 62.6743 60.989 61.9731 60.2591| 60.3822]| 56.3515| 589.3981| 54.5391] 55.3387
Radius of gyration of side chain (Levitt,
1976) 373| 62.6128] 60.0336 61.3867 58.7092| ©60.8291] 56.0973] 59.9721| 54.1291 55.5273

Ratio of average and computed

composition (Nakashima et al., 1990) 374 62.5841 60.3371 61.4729 59.0167| 58.5452| 56.4212| 51.3244| 54.3054 55,1993
Ratio of buried and accessible molar

fractions {Janin, 1979) 375| 64.7614] 62,1453 62.7604 61.3744| 60.9808| 59.6359| 57.3848| 56.4991| 56.2244
Refractivity (McMeekin et al., 1964),

Cited by Jones (1975) 376| 62.5308] 60.7348 61.5467 59.1479] 80.7184 56.823| 60.4314| 57.4012] 55.7241
Relative frequency in alpha-helix

{Prabhakaran, 1990) 377 62.58] 60.5749 61.3662 59.8737| 60.3986] 57.3684] 57.9096| 56.4991 55.9701
Relative frequency in beta-sheet

(Prabhakaran, 1990) 378| 63.2729] ©61.4934 61.764 61.0095| 60.7102] 57.3807| 59.1397| 56.3843 56.1916
Relative frequency in reverse-turn

(Prabhakaran, 1990) 379] 63.2729| 61.3498 61.4113 60.9521| 860.0582| 60.7512] 57.7743| 56.8763 57.6513

Table C.17: (Page 17 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Relative frequency of occurrence (Jones
etal., 1992) 380| 62.5226] 60.4109 61.5262 59.4209| 60.4724| 56.4212] 59.1274| 55.2813| 53.5222
Relative mutability (Dayhoff et al.,
1978b) 381| 62.8055| 60.5257 61.1817 59.4965| 60.6897| 55.8922] 60.0131| 56.1547 54.0225
Relative mutability (Jones et al., 1992) 382 62.539] 60.3781 61.276 58.7912| 60.7143] 54.4817| 58.8445 54.822 53.5468
Relative partition energies derived by i
the Bethe approximation (Miyazawa-
Jernigan, 1999) 383| 65.6265] 63.0023 63.8962 63.0597| 61.9444] 60.1935] 59.4596| 59.4965 59.152
Relative population of conformational
state A (Vasquez et al., 1983) 384| 62.5513| 60.4478 61.6205 58.2705| 60.8537] 53.8093]| 59.3612| 55.5683 53.514
Relative population of conformational
state C (Vasquez et al,, 1983) 385| 62.5882| 60.4437| 61.6041| 58.6518| 60.2263] 56.5155| 57.4422| 55.2239] 545022
Relative popuilation of conformational
state E (Vasquez et al., 1983) 386| 62.5513 60.497 61.4688 59,2381| 59.7507| 57.0444| 56.4048| 54.7031] 54.3833
Relative preference value at C"
(Richardson-Richardson, 1988) 387| 62.6661| 60.3781 61.3908 59.9229| 60.5872| 54.0676| 58.4591| 55.5478 54.4612
Relative preference value at C*
{Richardson-Richardson, 1988) 388| 62.7153| 60.9316 61.3129 59.6318| 58.6518] 56.2654] 55.2936| 55.3182 55.0312
Relative preference value at C-cap
(Richardson-Richardson, 1988) 389| 62.4897| 60.1771 61.2842 56.8927| 53.5263] 52.0912 48.897| 50.3731 54,7185
Relative preference value at C1
(Richardson-Richardson, 1988) 390| 62.5759] 60.3371 61.2309 59.1438| 59.8614 56.782| 56.7738 55.597] 56.3884
Relative preference value at C2
{Richardson-Richardson, 1988) 301| s2.7104] e0.6774] 61.7476| ©o.1766| 60.2632| 56.9173| 58.7748| 56.9008| 55.2594
Relative preference value at C3
(Richardson-Richardson, 1988) 392| 62.4815| 60.7143 61.5385 59.8737| 60.4683| 56.9665| 59.4186 56.987 55,7568
Relative preference value at C4
(Richardson-Richardson, 1988) 393| 63.3426| 61.4524 62.0469 61.1161| 60.8701] 58.8978] 59.9967| 57.3356 57.6185
Relative preference value at C5
(Richardson-Richardson, 1988) 394| 62.4815| 60.1607 61.436 59.5703| 60.9398 57.311 60.214| 57.1347] 56.5237
Relative preference value at Mid
(Richardson-Richardson, 1988) 395| 62.5431] #61.1612 61.4031 60.0008| 60.2509] 57.1593| 57.9383| 57.4504| 56.7533
Relative preference value at N"
(Richardson-Richardson, 1988) 396| 62.5349] 60.3494 61.4934 58.66| 58.9224| 55.4043 58.008 54.982| 54.2562
Relative preference value at N*
(Richardson-Richardson, 1988) 397| 62.5349] 60.3494 61.4934 58.66| 58.9224| 55.4043 58.008 54.982| 54.2562
Relative preference value at N-cap
(Richardson-Richardson, 1988) 398| 62.7891| 60.5241 61.4524 59.5252| 60.5421)| 57.4217] 58.1844| 57.2905 57.3561
Relative preference value at N1
(Richardson-Richardson, 1988) 399| 62.5554] 60.6118 61.3621 59.0331] 58.8773] 55.7118] 54.1332| 53.7805 55.023
Relative preference value at N2
(Richardson-Richardson, 1988) 400| 62.7768| 60.3453 61.4113 59.4391| 58.8978] 55.5601] 54.5924| 55.1419| 54.1619
Relative preference value at N3
(Richardson-Richardson, 1988) 401| 62.7276| 60.2509 61.317 58.9265| 56.6262] 56.5278 51.267| 51.1276] 54.0471
Relative preference value at N4
(Richardson-Richardson, 1988) 402 63.359] 61.5385 61.8296 61.4647| 60.0623] 59.1561] 58.6231| 56.1137| 56.6262
Relative preference value at N5
(Richardson-Richardson, 1988) 403| 62.6743] 60.4314 61.4729 59.0249| 59.9352| 55.7282| 58.9634| 56.4335 54.9
Residue accessible surface area in
folded protein (Chothia, 1976) 404| 63.7814| 61.5631 61.846 60.3617| 60.5708] 54.0635] 58.0572| 56.2449 55,4863
Residue accessible surface area in
tripeptide (Chothia, 1976) 405| 62.5841| 60.4601 61.4072 58.8322 60.415] 56.0071] 58.9716 54.863 55,7569

Table C.18: (Page 18 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Residue volume (Bigelow, 1967) 406| 62.6661| 60.7594 61.7107 59.5703| ©0.9111) 56.7287| 60.3535 54.412 55.8373
Residue volume {Goldsack-Chalifoux,
1973) 407| 62.6374] 60.6323 61.7476 59.4473| 60.6774] 57.1101] 60.0851| 54.6211 56.0973
Retention coefficient at pH 2 (Guo et
al., 1988) 408| 65.0115] 63.1253 62.8219 62.5144| 60.9603] 52.0782| 58.9429| 59.0331] 57.7989
Retention coefficient in HFBA (Browne
et al., 1982) 409] 63.8675 61.6 62.3421 61.0915| 60.4355| 57.6062] 57.6144| 57.4586| 55.2813
Retention coefficient in HPLC, pH2.1
(Meek, 1980) 410| 64.4046] ©61.7394 62.8178 61.5508| 61.3088] 57.9096| 57.7415| 57.7415| 55.4781
Retention coefficient in HPLC, pH7.4
(Meek, 1980) 411| 63.7773| ©1.2309 61.9772 60.4191| 59.3612| 57.7538| 56.9829| 57.2126 55.0189
Retention coefficient in NaClO4 (Meek-
Rossetti, 1981) 412| 64.8393] 62.4118 63.2237 61.8993| 61.7025]| 57.7497 58.049| 57.8071 58.2664
Retention coefficient in NaH2PO4
(Meek-Rossetti, 1981) 413| 64.6999] 62.3585 63.0187 61.7271 61.317| 56.7082] 57.8194] 57.7988] 57.5734
Retention coefficient in TFA (Browne et
al., 1982) 414| 64.1504] 61.5385 62.4446 61.03| 60.4355| 55.6462] 57.4955| 56.6303| 56.6959
SD of AA composition of total proteins
(Nakashima et al., 1980) 415] 62.5841] 60.0131 61.3211 59.3612| 60.6036 55.802| 59.7097| 55.6626] 53.997°
STERIMOL length of the side chain
(Fauchere et al., 1988) a16| 62.5841| 60.1771| 617148 59.1807| 60.3781] 58.2049] 59.2258| 55.3346| 54.0553
STERIMOL maximum width of the side
chain (Fauchere et al., 1988) 417| 62.5718| 60.1484 61.5713 58.9183| 60.4724 55.556| 60.2058| 54.6457 53.7436
STERIMOL minimum width of the side
chain (Fauchere et al,, 1988) 418| 62.6415 61.03 61.1612 58.6026| 51.3613 53514 51.9354| 52.9441 55,0025
SWEIG index (Cornette et al., 1987) 419| 64.9992| 63.0064] 63.4228] 62.8057| 61.6246| 59.3571| 58.9142| 58.9839] 57.7128
Scaled side chain hydrophobicity values
{Black-Mould, 1991) 420| 64.8885] 62.6333 63.1704 62.2683| 62.1985| 59.8122] 59.2258| 58.5534| 57.7087
Screening coefficients gamma, local
{Avbelj, 2000) 421| 63.1089] 60.8209 61.3211 54.9861 60.05| 56.9542] 57.9342| 56.1342 55.6626
Screening coefficients gamma, non-
local (Avbelj, 2000) 422| 62.7686| 60.8004 61.0915 54.1537| 58.5288] 57.3479] 52.2921| 52.4561 55,0312
Sequence frequency (Jungck, 1978) 423 62.58] 60.4683 61.682 58.9716| 61.0341] 56.4376] 60.5985| 54.5022| 53.6985

Short and medium range non-bonded

energy per atom (Oobatake-Qoi, 1977) | 424| 62.6005 59.9803 61.2596 59.5006| 59.9639] 55.5683| 55.4986| 55.7405 53.8462
Short and medium range non-bonded

energy per residue (Oobatake-Ooi,

1977) 425| 62.6046| 60.4437 61.4975 59.3366| 60.7512| 57.2782| 58.5247| 55.7118 55.5396
Side chain angle theta{AAR) (Levitt,

1976) 426| 62.4897 59.845 59.6195 56.5606| 57.0485| 53.3623| 49.8483| 49.8483| 55.9989
Side chain hydropathy, corrected for

solvation (Roseman, 1988) 427| 64.8475] 62.4241 63.1376 61.6861| 61.0382| 59.1151] 58.2377] 58.368% 57:352
Side chain hydropathy, uncorrected for

solvation (Reseman, 1988) 428| 64.8475 62.256 62.9695 61.7066| 61.0997| 58.3689| 57.8932| 58.0244| 57.6923
Side chain interaction parameter

(Krighaum-Komoriya, 1979) 429 64.421| ©61.7722 63.0802 62.5677| 62.2068] 59.1192] 60.5749| 58.4755 57.7087
Side chain interaction parameter

{Krigbaum-Rubin, 1971) 430] 63.9249] 61.9608 62.4815 61.436| 62.1002| 58.4345] 60.9316 58.049] 57.8358
Side chain orientational preference

{Rackovsky-Scheraga, 1977) 431| 64.2324] 62.1986 62.2929 61.4934| 60.9029 60.009] 57.9752| 57.3561 57.4627
Side chain torsion angle phi(AAAR)

{Levitt, 1976) 432| 62.4405 60.296 61.6 58.4304| 57.7989| 56.8763| 50.1722| 51.2342| 54.2562
Side chain volume (Krigbaum-Komoriya,

1979) 433| 62.5923| 60.7676 61.2186 59.5252 60.866| 56.7369] 60.3699| 56.3187| 56.0194

Table C.19: (Page 19 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Side-chain conformation by gaussian
evolutionary method (Yanget al., 2002) | 434| 62.5308] 60.8783 61.6656 59.4801| 60.4642| 57.0773] 59.8818| 55.2239| 55.0804

Side-chain contribution to protein

stability (kJ/mol) (Takano-Yutani, 2001) | 435 63.765 61.82986 62.6497 60.7348| 61.4606| 58.5288| 59.2874| 57.4914 57.4709
[Signal sequence helical potential (Argos

et al,, 1982) 436| 64.3226] 61.8173 61.9075 60.8168| 60.0377| 58.1433] 57.3274| 56.4909| 57.0896
Size (Dawson, 1972) 437| 62.6456] 860.4519 61.2022 59.1192| 59.0987| 55.3551| 58.6887| 54.5514] 54.0289

Slope in regression analysis x 1.0E1

(Prabhakaran-Ponnuswamy, 1982) 438| 62.5185] 60.5339 61.7107 59.4186| 60.6446] 56.5237| 59.6974| 53.5304 55.4207
Slopes dekapeptide, FDPB VFF neutral

(Avbelj, 2000} 439| 62.5718] 60.3289 61.2924 55.6339| 59.6482) 55.9332] 55.1009| 55.1747| 54.8384
Slopes proteins, FDPB VFF neutral

(Avbelj, 2000) 440| 62.5923] 60.3453 61.1612 55.9332 59.111] 56.8558] 54.3013| 54.6785 54.863
Slopes tripeptide FDPB PARSE neutral

(Avbelj, 2000) 441] 62.5882] 60.5913 60.8947 53.7231] 58.0905| 56.9255| 55.4945| 54.2603] 54.5842
Slopes tripeptide FDPB VFF all (Avbelj,

2000) 442 62.461| 60.4888 60.8332 53.2557| 59.6933] 56.4663]| 55.1747| 55.1091 54.0307
Slopes tripeptide, FDPB VFF neutral

(Avbelj, 2000) 443| 62.4159] 60.5011 61.5508 53.4074| 58.4304] 57.4176] 54.9984| 55.0599 54.8671
Slopes tripeptide, FDPB VFF noside

(Avbelj, 2000) 444 62.4323] 60.4806 60.8127 53.2147| 58.8485| 57.0485| 54.1947| 54.4202 54.74
Slopes tripeptides, LD VFF neutral

(Avbelj, 2000) 445| 62.4118] ©60.8332 61.0341 57.5037| 55.8389] 56.8706] 52.2101| 52.9031] 55,6338
Smoothed upsilon steric parameter

(Fauchere et al., 1988) 446| 62.5718| 60.6815 61.4811 59.3202| 59.4678]| 58.9429] 55.7733| 54.9082 56.905
Solvation free energy (Eisenberg-

McLachlan, 1986) 447| 64.7081] 62.7686 63.2893 62.3462 61.194 60.333| 58.7789| 59.1561] 57.7866

Spin-spin coupling constants 3JHalpha-
NH (Bundi-Wuthrich, 1979) 448| 62.5308| 60.1115 61.2186 59.1192| 55.3551 55.597| 50.5371| 50.4592 55,4288
Steric parameter (Charton, 1981) 449| 62.7153| 60.8045 61.2883 58.8855| 59.6605] 58.3771]| 55.5314| 54.6252 56.4294

Surface composition of amino acids in
extracellular proteins of mesophiles
(percent) (Fukuchi-Nishikawa, 2001) 450| 63.9249] 61.5385 62.6374 61.3088| 62.0018]| 58.4427] 60.1279 58.25 56.8009

Surface composition of amino acids in
intracellular proteins of mesophiles
{percent) (Fukuchi-Nishikawa, 2001} 451| 63.7609| 61.7107 61.84189 60.8865| 60.9398] 56.1055 57.803] 55.6421 56.4786

Surface composition of amino acids in
intracellular proteins of thermophiles

(percent) (Fukuchi-Nishikawa, 2001) 452| 63.1417] 60.6364 61.8296 59.5252| 59.3858] 55.8758| 54.2685| 54.3915 54.6047
[Surface composition of amino acids in

nuclear proteins (percent) (Fukuchi-
Nishikawa, 2001) 453| 63.9864| 61.8747 61.8009 60.661| 60.8578| 57.0567| 57.3479| 56.2982 56.9665

Surrounding hydrophobicity in alpha-
helix (Ponnuswamy et al., 1980) 454| 62.9777| 60.6897 61.6205 60.0862| 60.2099] 58.7051] 55.3018] 56.0891 55.1173

Surrounding hydrophobicity in beta-
sheet (Ponnuswamy et al., 1980) 455| 63.2934] 60.7758 61.4442 60.9439| 59.3899| 54.2234] 56.823] 56.2244] 54.9205

Table C.20: (Page 20 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Surrounding hydrophobicity in folded
form (Ponnuswamy et al., 1980) 456 64.503| 62.1412 63.3057 62.5759| 61.6246] 60.1156] 60.9644| 57.885| 57.5775
Surrounding hydrophobicity in turn
(Ponnuswamy et al., 1980) 457| 63.7691| 61.4113 62.8629 61.6041| 51.0464 59.599] 60.1566 56.823 56.7697
TOTFT index (Cornette et al., 1987) 458 65.196| 62.6948 63.8429 63.072| 61.7107| 57.9547| 59.1356| 59.3776| 58.5452
TOTLS index (Cornette et al., 1987) 459 65.196 62.744 63.8716 63.2196| 61.6451] 58.3402] 59.1069| 59.5252 58.291

The Chou-Fasman parameter of the coil

conformation (Charton-Charton, 1983) | 460 63.113] 61.0054 61.477 61.0177| 60.2673| 60.3822] 58.8691 57.188] 57.8932
The Kerr-constant increments

(Khanarian-Moore, 1980) 461| 62.5144] 60.2304 61.5467 59.0126] 60.2263 54.289| 57.7251| 54.8302] 53.8872

The number of atoms in the side chain
labelled 1+1 {Charton-Charton, 1983) 462| 62.4897] 60.8291 61.2063 58.6108| 56.4909| 55.4781| 58.2669| 55.3756| 53.9364

The number of atoms in the side chain
labelled 2+1 {Charton-Charton, 1983) 463| 62.4938| 60.3904 61.2104 58.8117| 57.4012] 57.7333] 58.2008| 54.4776 535181

The number of atoms in the side chain
labelled 3+1 {Charton-Charton, 1983) 464| 62.4897] 60.0664 61.1735 58.1762| 55.1665| 54.8466] 58.0326| 56.0194| 53.6944
The number of bonds in the longest
chain (Charton-Charton, 1983) 465| 62.5513] 60.3289 61.1981 58.496| 59.8778] 56.3474] 60.05| 56.8189| 53.8339
The relative stability scale extracted
from mutation experiments (Zhou-

Zhou, 2004) 466| 63.7035] 61.6984 62.1248 61.3744| 61.4196| 57.2372] 60.6651] 56.3638 57.028
The stability scale from the knowledge-

based atom-atom potential (Zhou-

Zhou, 2004) 467| 64.1299] 61.9567 62.8383 61.8255] 61.9608] 58.2623] 59.8122| 57.475] 57.8932
Thermodynamic beta sheet propensity
{Kim-Berg, 1993) 468| 62.6415] 61.0136 61.682 58.3853] 58.6641] 58.2131] 52.5217| 52.9892] 57.1306

Transfer energy, organic solvent/water

{Nozaki-Tanford, 1971) 469 64.421] 62.7071 62.3544 61.8173| 60.1525] 57.2167| 58.5329| 57.7579| 57.7948
Transfer free energy (Janin, 1979) 470] 64.6137]| 62.0346 62.297 60.7922 59.193]| 58.6395| 56.8517| 56.5606] 56.5155
Transfer free energy (Simon, 1976},

Cited by Charton-Charton {1982) 471| 63.5845 651.071 62.4158 60.2755] 61.2678] 58.1105| 58.8035| 57.3192] 55.0148
Transfer free energy from chx to oct

(Radzicka-Wolfenden, 1988} 472| ©4.2406] ©61.3088 61.9403 60.7512 59.804] 58.7256| 56.7861 56.29] 56.0932
Transfer free energy from chx to wat

(Radzicka-Wolfenden, 1988) 473| 64.8967| 62.2601 62.6948 61.8009| 61.1489] 59.9557 58.168| 57.8973| 58.5208
Transfer free energy from oct to wat

(Radzicka-Wolfenden, 1988) 474| ©64.3759] 62.4528 62.5062 62.2314| 60.9234] 58.3238] 58.3935| 58.5247] 58.1844
Transfer free energy from vap to chx

(Radzicka-Wolfenden, 1988) 475| 62.6251] 60.3001 61.3334 58.8978| 60.4314| 56.2285| 57.5447| 56.1219 53.9774
Transfer free energy from vap to oct

(Radzicka-Wolfenden, 1988) 476| 63.0556] 60.5503 61.3498 59.7507| 59.8942)| 57.0362] b57.2372| 55.6995 55.269
Transfer free energy to lipophilic phase

{von Heijne-Blomberg, 1979) 477| ©4.4087| 62.2232 62.9572 61.5754| 60.7553| 57.4299] 58.1351 57.885 57.0691
Transfer free energy to surface (Bull-

Breese, 1974) 478| 64.6711] ©62.7686 62.5964 62.133| 61.2432| 57.8399| 58.4755| 58.0449 57.5693
Transfer free energy, CHP/water

(Lawson et al., 1984) 479| 63.5928| 61.3498 61.5959 61.1899 60.255| 59.2381] 55.1542| 57.2495 56.1711
Transmembrane regions of mt-proteins

(Nakashima et al., 1990) 480 63.683] 60.8209 61.723 59.8942| 59.4555] 59.0413] 56.2982| 54.9574 55.1747

Table C.21: (Page 21 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Transmembrane regions of non-mt-
proteins (Nakashima et al., 1990) 481| 63.9454] ©61.7476 62.2642 60.6364| 60.6733| 56.7123| 58.3525| 57.0485| 56.0153
Turn propensity scale fer
transmembrane helices (Monne et al.,
1999) 482| 63.9946| 61.5672 62.4446 61.4524| 59.8327| 57.1183] 59.3243| 57.3971 55.679
Unfolding Gibbs energy in water, pH7.0
(Yutani et al., 1987) 483 63.683] 61.9157 62.3831 61.2719] 60.9152| 57.7743] 58.6682| 56.9091 56.0481
Unfolding Gibbs energy in water, pH9.0
(Yutani et al., 1987} 484| 63.3508] ©1.0464 61.5877 60.3822 60.456| 57.9014| 57.7784| 55.8471| 55.2157
Value of theta(i) (Rackovsky-Scheraga,
1982) 485| 62.5308] 60.5175 61.7599 58.9265| ©0.0295] 56.5565| 54.7769 53.555] 55.8618
Value of theta(i-1) (Rackovsky-
Scheraga, 1982) 486 62.379] 60.4273 61.5016 58.9019| 58.0203] 55.6831] 53.0507| 53.7354 56.2654
Volume (Grantham, 1974) 487| 62.5841| 60.7512 61.5139 59.804 60.743] 56.4909] 60.1443| 56.5975 56.0891

Volumes including the crystallographic
waters using the ProtOr (Tsai et al.,

1999) 488| 62.6743]| 60.6323 61.7066 59.5129| 60.8414| 56.7738| 60.4355| 54.8589| 56.0563
Volumes not including the |
crystallographic waters using the
ProtOr (Tsai et al., 1999) 489| 62.6292| 60.7594 61.7435 59.5457| 60.8742| 56.7041] 60.4478| 54.7933 56,1096

Weights for alpha-helix at the window
position of -1 {Qian-Sejnowski, 1988) 490| 62.5513 60.4601 61.2498 59.7753| 59.1274] 57.6349] 56.2203| 586.0973 56,1918

Weights for alpha-helix at the window
position of -2 {Qian-Sejnowski, 1988) 491| 62.5103| 60.7348 61.6451 60.1607| 60.1525] 57.2003] 57.5406| 57.3684| 56.2572

Weights for alpha-helix at the window
position of -3 {Qian-Sejnowski, 1988) 492| 62.5636| 60.6487 61.4565 585539 60.497] 56.1055] 57.7046| 56.7082 56.331

Weights for alpha-helix at the window
position of -4 (Qian-Sejnowski, 1988) 493 62.379] 60.4314 61.5344 58.4796] 59.3899] 56.2326] 55.802] b55.7405| 54.9328

Weights for alpha-helix at the window
position of -5 (Qian-Sejnowski, 1988) 494| 62.5759| 60.3001 61.5426 58.3484 60.009] 52.9974] 57.7866| 55.7897| 53.4033

Weights for alpha-helix at the window
position of -6 {Qian-Sejnowski, 1988) 495| 62.4815 60.3781 61.4688 59.111| 60.2509| 55.3141] b58.0654| 56.9378 53.9569

Weights for alpha-helix at the window
position of 0 (Qian-Sejnowski, 1988) 496| 62.6292| 60.7061 61,723 60.7758] 60.0664] 58.281] 57.5611| 58.3443] 56.9173

Weights for alpha-helix at the window
position of 1 (Qian-Sejnowski, 1988) 497| 62.6825| 60.5421 61.4113 60.0295| 56.1834] 58.1926] 50.5577| 53.7518 55.966

Weights for alpha-helix at the window
position of 2 (Qian-Sejnowski, 1988) 498| 62.5595 60.5462 61.6328 60.132| 57.4791| 57.7661] 52.8457 53,719 56,1014

Weights for alpha-helix at the window
position of 3 (Qian-Sejnowski, 1988) 499 62.5759] 60.3945 61.477 60.2427| 59.0126] 57.0198] 55.4617| 56.5565 56.249

Weights for alpha-helix at the window
position of 4 (Qian-Sejnowski, 1988) 500 62.826| 60.9521 61.7148 61.1366| 59.5375| 56.7041| 55.2321| 56.6467 56.5811

Weights for alpha-helix at the window
position of 5 (Qian-Sejnowski, 1988) 501| 62.6538] 60.8168 61,436 60.5872| 59.2464] 57.3889] 56.5401] 57.2413] 55.6052

Table C.22: (Page 22 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Weights for alpha-helix at the window
position of 6 (Qian-Sejnowski, 1988) 502| 62.5923| 60.4396 61.5467 59.4801| 60.4519| 55.4576| 59.5375| 56.0358 54.8425

Weights for beta-sheet at the window
position of -1 (Qian-Sejnowski, 1988) 503| 63.7691] 61.7558 62.6579 61.2596 61.235| 57.4627| 59.4883| 58.9429 56.6631

Weights for beta-sheet at the window
position of -2 (Qian-Sejnowski, 1988) 504| 63.1212] 61.2719 61.9075 60.3535| 60.1648] 56.8353] 57.3889| 56.1137] 54.9082

Weights for beta-sheet at the window
position of -3 {Qian-Sejnowski, 1988) 505 62.539] 60.1361 61.5303 58.9757| 60.5421] 55.0845] 58.1474| 55.9127 54,5268

Weights for beta-sheet at the window
position of -4 {Qjan-Sejnowski, 1988) 506| 63.3877| 60.9644 62.0387 60.2837| ©60.3986] 57.0773] 59.0331| 57.4627| 55.3223

Weights for beta-sheet at the window
position of -5 {Qian-Sejnowski, 1988) 507| 63.6707] 60.9644 62.5062 60.5667| 61.0464 59.394] 60.2222| 58.9962 56.618

Weights for beta-sheet at the window
position of -6 {Qian-Sejnowski, 1988) 508| 63.5107| 60.9726 62.1166 60.0705 61.071| 58.1433] 59.0805| 57.9793 55.2649

Weights for beta-sheet at the window
position of 0 (Qian-Sejnowski, 1988) 509| 63.8429] 61.5467 62.7809 61.5754] 61.8501] 57.9711] 60.0664| 59.2628] 57.6964

Weights for beta-sheet at the window
position of 1 (Qian-Sejnowski, 1988) 510 63.7035] 61.7353 62.4282 61.2063| 61.6697] 59.0331] 59.6605| 59.3448| 56.9296

Weights for beta-sheet at the window
position of 2 (Qian-Sejnowski, 1988) 511| 64.0971 61.9198 62.539 61.1858| 60.7922| 57.86886| 57.5898| 58.0408 57.4299

Weights for beta-sheet at the window
position of 3 (Qian-Sejnowski, 1988) 512| 62.6538] 60.4437 61.4237 58.9921| 60.6651] 56.6426] 57.5734| 55.5765] 54.8671

Weights for beta-sheet at the window
position of 4 (Qian-Sejnowski, 1988) 513| 62.5308] 60.3083 61.7476 58.6723| 650.4724 57.147] 59.0249| 57.4381 54.0471

Weights for beta-sheet at the window
position of 5 (Qian-Sejnowski, 1988) 514| 62.7645| 60.5831 61.4196 58.8117| 60.1525| 53.3541| 57.8276| 57.2167| 54.3792

Weights for beta-sheet at the window
position of 6 (Qian-Sejnowski, 1988) 515| 62.7891| 60.5749 61.6779 59.8286| 60.8168] 56,8107 59.8081 57.028 56.1752

Weights for coil at the window position
of -1 (Qian-Sejnowski, 1988) 516| 63.7486 61.477 62.7358 60.989| 60.5708| 60.0336| 57.9916| 58.2582 58.2869

Weights for coil at the window position
of -2 {Qian-Sejnowski, 1988) 517| 64.6014] 62.0346 62.785 62.3339] 61.4155] 59.3407] 59.6195| 59.8327] 58.5288

Weights for coil at the window position
of -3 (Qian-Sejnowski, 1988) 518| 62.8752| 60.7225 61.3293 59.9598| 60.5052 56.413] 59.3694| 58.2582 57.2331

Weights for coil at the window position
of -4 {Qian-Sejnowski, 1988) 519 62.5226| 60.2263 61.5631 59.3653| 60.5052| 56.1629] 59.1602| 56.7205 54,1209

Table C.23: (Page 23 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Weights for coil at the window position
of -5 {Qian-Sejnowski, 1988) 520| 62.9367| 60.5421 61.3047 59.4924| 59.5949| 54.3792| 57.0855| b55.3223 54.1168
Weights for coil at the window position
of -6 {Qian-Sejnowski, 1988) 521| 62.6661| 60.5749 61.3129 59.029|] ©0.9603| 57.2178] 59.3735| 56.9419 54,6211
Weights for coil at the window position
of 0 {Qian-Sejnowski, 1988) 522| 63.9905] 61.1161 62.5677 60.9849] 61.2268| 60.8127| 59.0208| 59.1971| 58.0613
Weights for coil at the window position
of 1 {Qian-Sejnowski, 1988) 523| 64.6629| 61.8419 62.9531 61.0956| 59.7917| 61.0956| 54.6457| 56.2203 59.2956
Weights for coil at the window position
of 2 (Qian-Sejnowski, 1988) 524| 64.4087| ei1.7086| 625472 61.2104| 60.415| 59.9434| 56.1588| 57.8358| 58.7051
Weights for coil at the window position
of 3 {Qian-Sejnowski, 1988) 525| 62.6743 60.702 61.5221 60.5298| 58.1269] 57.2044] 53.8585| 55.7651 55.3961
Weights for coil at the window position
of 4 (Qian-Sejnowski, 1988) 526| 62.5513| 605544 61.6656| 59.9516| 57.3151| 55.1501] 53.0794| 55.4125| 54.9082
Weights for coil at the window position
of 5 {Qian-Sejnowski, 1988) 527| 62.3708] 60.1935 61.682 59.2464 59.886 56.946 56.126| 56.1875| 54.3662
Weights for coil at the window position
of 6 (Qian-Sejnowski, 1988) 528| 62.5554] 60.4396 61.4031 59.2094| 60.2017| 53.9979] 58.7133| 57.0321 53.89159
Weights from the IFH scale (Jacobs-
White, 1989) 529| 64.5973| 62.0223 62.8055 60.6077| 60.8988] 59.2381] 57.3438| 56.9706] 57.5406
Zimm-Bragg parameter s at 20 C (Sueki
et al., 1984) 530 62.8793| 61.1243| 61.4811| 61.2965| 60.3001] 61.6287| 58.7338| 57.7128| 57.6308
Zimm-Bragg parameter sigma x 1.0E4
(Sueki et al., 1984) 531| 62.6160] 60.009] 613785| 585452 60.009| 55.084| 60.0008| 54.9984| 54.0512
alpha-CH chemical shifts (Andersen et
al., 1992) 532| 62.4897] 60.8004 61.4196 58.7174| 58.5862 56.29| 47.5726] 53.1081] 55.1708
alpha-CH chemical shifts (Bundi-
Wuthrich, 1979) 533| 62.4528| 60.3904 61.7599 58.2213 58.25| 55.7323| 45.7192| 53.2311 549123
alpha-NH chemical shifts {Bundi-
Wuthrich, 1979) 534| 62.5472| 60.4068 61.6205 58.4673| 53.1245] 54.7974] 47.7448| 48.5977 55.31
p-Values of mesophilic proteins based
on the distributions of B values
{Parthasarathy-Murthy, 2000) 535| 63.8634] 62.0223 62.662 62.1822| 62.1125| 60.3494] 61,3006 59.111] 58.1844
p-Values of thermophilic proteins based
on the distributions of B values
(Parthasarathy-Murthy, 2000) 536 63.2032] 61.4811 61.5508 60.9298| 60.6241] 59.6769] 58.3238| 54.8835 56.7123
pK (-COOH) (Jones, 1975) 537| 62.5718 60.173 61.0587 59.5211| 60.0458] 57.0732| 57.8481| 54.2562| 54.3095
pK-C (Fasman, 1976) 538| 62.8793] 60.7471 61.6082 60.3863| 60.2919 57.393 53.838| 55.5888] 54.3751
pK-N (Fasman, 1976) 529 62.58] 60.6323 61.559 59.8409| 56.3351] 58.0039] 48.3557| 53.0179 55.7528
pK-a{RCOOH) {Fauchere et al., 1988) 540] 62.5677] ©0.4888 61.6328 59.5006| 56.6754] 57.0198| 50.3403| 51.2629] 56.2203
van der Waals parameter RO (Levitt,
1976) 541| 63.1294| 61.3375 62.0633 60.6323| 60.9644| 57.7702] 59.4718| 56.4335 58.9757
van der Waals parameter epsilon
(Levitt, 1976) 542| 62.8137] 60.5134 61.1653 59.8696 61.235 54.289] 59.5375| 57.1716] 54.5596

Table C.24: (Page 24 of 24) These are 3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Appendix D

(Table D)

JattributeSelected_Bagging_15_RBF_7_56.txt

[BayesNet_109.xt
[BayesNet_351.xt
[BayesNet_356.xt
[BayesNet_s3.0xt
[BayesNet_56.txt
[BayesNet_57.txt

yesNet_351.txt

r_MultiBoost_13_Ba)
.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt
RF_225 5_383.t

[costsensitive(E_1.8)_MultClassClassife
[costsensitive(E_2.0)_Logistic_344_noind.txt

|Costsensitive(E_2.0)_Logistic_86.txt

[costensitive{(e_2.0)_

[AtirbuteSelected Bagging 15 RBF 7 S6.xt

138) mﬁ« Mulnm 13 BayesNet 351.txt
5 g 3t
300 Logitic g5t
0] MuliClasClssier_VultBoost T3 BoyesNet 0950
20,8 225 5 S0
Citiciasscassiher VoltBoas T3 BayesNe 5160
344_nolnd.txt_

ultiClassClassifier_MultiBoost_13_BayesNet_109.txt

ic_344_nolnd.txt

ultiClassCiassifier_MultiBoost 13_BayesNet_109.txt

ultiCassClassifier_MultiBoost_13_BayesNet 351.txt
stic_86.0xt

| 0.53292] 0.5246]
| 0.95013] 0.54355] 0.94702] 094257| 095288]

| o9sis]
m

| osazl o
0.90817} m—mm—
| 0.95017] 0.95187] | 054142 0.9531]

| 0.94453] 0.93619] 0.94144] 092868| 094042

mzm

[MultiBoost_10_MLP_H62_56.txt

[MultiBoost_15_BayesNet_356.txt

[Multicia: yesNet 3516t | 056782| 054916[ 054862

[MultiClassClassifier MultiBoost 13 BayesNet 109.txt _-_Imﬂ sa11| 097136] 087102
[MultiClassClassifier_MultiBoost_13_BayesNet 351t | 0.95637] 0.94281] 0.93995] 0.95622| 0.9724 | 0.92308] o0.8549]
[MultiClassQiassifier_MultiBoost BayesNet 351.txt

[RF_225_10_137.6t

[RF 225 5 137.00

RF_225 5_173.00

[RF_225 5 173noind et

| 0.78215] 0.7883] _ _mu

[RF_225_5_364.1x

[RF_225 5 383 1x:

[RF_225 5 408 1

[RF_225 5_a19.1x

[zeroR173.00

| 091643] 0.96224] 0.9532]
mm mmmzm
| 0:54845] 0.93568| 093583| 092077| 093678| 091636| 0.95057| 0.95913[ 0.50545| 086103
o. _-
mmmn‘mlm
1245] 0.94381] | _o9s25] 094573
.54267[ 0 us38]_093655] 093925] 0524es] 0537e8] _0117] 0 5s0ee| 0oass] 0.90303]
-m-m—m
E | 0.94515] 0.95122] 0.94468| 092676 _09378| 091006| 0.94987| 094461 0.90134]
mmmm—mm——
2046 |_oss3] | 0.54352] 0.93656] 0.94533] | 095989] 095771]
—mm—lm—
| 0.94552] 0.94735] 0.93697] 0.94035| 0.92898| 094259| 091429| 0.95377| 0.9478s| 0.9088;3
| 0:54506] 0.94816] 0.93622| 093766] 092699| 09a125| 09147| 095211[ 0.9481a| 0.50855] 0:86322)
m-mmm 093812 m-mn'ﬂ
762| 0.92672| | 089508] 0.92745] 093155| 0.88339| 0.82846]
——mnza—
mm—lm | 090373 095529 0.94382| 090551| 0.87367|

88963] 0.91045] 0.91633] 090975 ———m——
—m———lmm
| 0.96655)] | 0.55613] 096929 | 094676] 094973]

86408|
______
[ 097 [oosess] 092895]

| 075785 078167] 0.76%1]
—mmmm
| 0.79543] 0.7985] 0.68788] 0.72612| 0.71045] 0.67372| 074175
| 0.76851| 0.75352| 07879] 0.76761| 076922| 0.7756| 0.69025| 0.70681[ 0.7028| 0:6517a] 0.73755|
200; ["o.77648] 0.78105| 0.7874a]_0.69724] 0.72093] 0.71002] 07415] 0.5269%)

092142] 0.95644] 0.95142| 0.91335| 0.86906]

_

am

| 070601| o.7014] 0.65864| 0.73985|

Table D.1: (Page 1 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2
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s 3| & =g 3 gl g &
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a8l 2 il g 2 d g A g =
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2 2 2 % & 7 7 = o ! W
S 8 8 S S 8 S S 5 = o= =)
[at |_Bagging_15_RBF_7_56.txt
BayesNet_109.txt.
BayesNet_351.ixt
BayesNet_356.txt
BayesNet_53.txt
BayesNet_56.txt
BayesNet_57.txt
C itive(E_1.8)_MultiClassClassifier_| 13 BayesNet 351.ixt
CostSensitive( )_Logistic_344_nolnd.txt
C itive(E_2.0)_Logistic_86.txt
C itive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt
C itive(E_2.0)_RF_225 5_383.txt
CostSensitive(H_1.8) MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 1]
C itive(H_2.0)_Logistic_344_nolnd.txt 0.95646, 1
@ itive(H_2.0)_Logistic_86.txt 0.96177| 0.99269 1]
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_109.txt 0.96986| 0.96579| 0.96424 1)
CostSensitive(N_1.2) Logistic 344 nolnd.txt 0.9136] 0.92804| 0.92366] 0.91641
C itis |_1.8) MultiClassClassifier_| _13_BayesNet_109.txt 0.89577| 0.88265[ 0.87861| 0.93615| 0.95935 1
CostSensitive(N_1.8) MultiClassClassifier_MultiBoost_13 BayesNet_351.txt 0.93921] 0.87609| 0.87743| 0.89485| 0.95707| 0.96654 1
CostSensitive(N_2.0)_Logistic_86.txt 0.77594| 0.76057| 0.76365| 0.75875| 0.96006| 0.93259( 0.94432 1
DTNB_109.txt 0.93593| 0.93237 0.9297| 0.95215| 0.96977| 0.97007 0.95351) 0.90897 1
IBK_60_w_173.txt 0.79344| 0.82193( 0.80617| 0.80416| 0.89859)| 0.88581( 0.88205| 0.89929| 0.87573 1]
|!BK_60_w_344.txt 0.7988| 0.83269| 0.8162| 0.80553| 0.90766| 0.88591| 0.87837| 0.89943| 0.87504]| 0.98177 1)
Logistic_0.txt 0.93938] 0.9571| 0.95518| 0.94486| 0.99355| 0.95469| 0.95221 0.924) 0.97258| 0.87777| 0.88435 1
Logistic_1.txt 0.92954] 0.95397| 0.94828| 0.93828] 0.99135| 0.9461| 0.94279| 0.92186] 0.96587| 0.86894| 0.87738| 0.99621
Logistic_109.txt 0.94317| 0.95365| 0.95313| 0.94476| 0.99084| 0.95645| 0.95644| 0.92308| 0.97324| 0.87103| 0.87353| 0.99598
Logistic_137.txt 0.94446| 0.95204| 0.95284| 0.94188| 0.98792| 0.94989| 0.9555| 0.92131] 0.97005| 0.86301| 0.86998| 0.9954|
Logistic_150.txt 0.93888| 0.94978[ 0.94725| 0.93721| 0.98972| 0.94916| 0.95037| 0.92471] 0.96912| 0.86238| 0.87199] 0.99049
Logistic_18.txt 0.93914| 0.95427| 0.95056| 0.93974| 0.98715| 0.94744| 0.95033| 0.91875| 0.96831| 0.86636| 0.87084| 0.99528)
Logistic_194.txt 0.9401| 0.9565| 0.95325[ 0.9453| 0.99435| 0.9552| 0.95238| 0.92325| 0.97318| 0.88113| 0.88396| 0.99716)
Logistic_195.txt 0.93747| 0.95043| 0.95006| 0.93572| 0.99043| 0.94775| 0.95204| 0.92797| 0.96768| 0.87313| 0.88005| 0.99504
Logistic_196.txt 0.93997| 0.95189( 0.95413| 0.93885| 0.98816| 0.94711| 0.95254| 0.92593| 0.96751| 0.8627| 0.8691| 0.99484|
Logistic_197.txt 0.94062| 0.95168| 0.95313| 0.93858| 0.98834| 0.94646| 0.9532| 0.92594| 0.96688| 0.86538| 0.87511| 0.99534
Logistic_222.txt 0.94111] 0.95409| 0.95162| 0.94251| 0.99174| 0.95454| 0.95541| 0.9224] 0.97276| 0.88098| 0.88019] 0.9966|
Logistic_344.txt 0.93769] 0.95968| 0.95332| 0.94373| 0.99641| 0.95352]| 0.94933| 0.92388| 0.97303| 0.87724| 0.8881| 0.99719
Logistic_347.txt 0.93548| 0.95561| 0.94849| 0.94039| 0.99043| 0.94872| 0.94657| 0.91895| 0.96917| 0.87199| 0.87769| 0.99452
Logistic_348.txt 0.93701| 0.95515| 0.9489| 0.93924| 0.9903| 0.94805| 0.94891| 0.91949| 0.96847| 0.87181| 0.87675| 0.99518
Logistic_352.txt 0.93786]| 0.95235[ 0.94839| 0.94107| 0.98834)| 0.95085| 0.95048| 0.92171| 0.97097| 0.86885| 0.86759] 0.9928|
Logistic_356.txt 0.935] 0.94725| 0.94371| 0.93436| 0.98802| 0.94667( 0.94724| 0.92232| 0.96629| 0.86243| 0.87386 98997
Logistic_364.txt 0.94619| 0.94805 0.9506| 0.93942| 0.98612| 0.9466| 0.95806| 0.92257| 0.96881| 0.86036| 0.86611 99152
Logistic_383.txt 0.94422| 0.9561| 0.95384| 0.94676| 0.99285| 0.9554| 0.95553| 0.92153| 0.97264] 0.87686| 0.88294| 0.99768
Logistic_408.txt 0.94367| 0.94865| 0.95043| 0.93855| 0.98583| 0.94759| 0.95721| 0.92386| 0.96863| 0.85623| 0.86067| 0.99062
Logistic_458.txt 0.93894] 0.9563 0.9516| 0.94289] 0.99031) 0.95006( 0.94997| 0.91803| 0.97103| 0.87243 0.878] 0.99701)
Logistic_459.txt 0.9396] 0.95617| 0.95203| 0.94266| 0.9894| 0.94948| 0.95068| 0.91773| 0.9702| 0.87024| 0.87499| 0.99667
Logistic_86.txt 0.93976] 0.95221| 0.95774| 0.93912| 0.9897| 0.9496| 0.95379| 0.93075] 0.96932| 0.86391| 0.87155| 0.99475
Logistic_98.txt 0.92655| 0.94125[ 0.94057| 0.92857| 0.97652 0.935| 0.93696| 0.91667| 0.95863| 0.84252| 0.84164| 0.98305)
LogitBoost_285_DecisionStump_18.txt 0.93363] 0.94604 0.94309| 0.9374| 0.98399| 0.95085| 0.94933| 0.9246| 0.96744| 0.87119| 0.87607| 0.99058|
LogitBoost_285_Deci: )_344.txt 0.92936| 0.94942| 0.94458| 0.93728| 0.99298| 0.95267| 0.94616| 0.92546| 0.97038| 0.88231[ 0.89625| 0.99233
MAX_RF_225_5(63.5148).txt 0.9355| 0.92856| 0.92759] 0.93315| 0.91278| 0.89221| 0.89365| 0.80351| 0.91971| 0.85536| 0.86419| 0.93133
MLP_H62_53.txt 0.8123] 0.81735| 0.80941| 0.82129| 0.8924| 0.86793| 0.86341| 0.86506]| 0.86709| 0.84504| 0.84035| 0.88379
MultiBoost_10_BayesNet_351.txt 0.96996| 0.9124( 0.91708| 0.9447| 0.93515| 0.91793| 0.96049| 0.82893| 0.95311| 0.79485| 0.79508| 0.95235
MultiBoost 10 _MLP_H62_56.txt 0.77525| 0.78448 0.772] 0.78984| 0.88359| 0.86505| 0.85502| 0.86513] 0.85341| 0.86045| 0.85558| 0.86649
MultiBoost_15_BayesNet_356.txt 0.94568| 0.91018 0.9042| 0.93284| 0.93422| 0.90168| 0.92396| 0.82067| 0.94262| 0.78815| 0.79873| 0.94454|
|MulnClassClasSifierﬁBayeSNetﬁSSl.txt 0.976] 0.92525[ 0.92752| 0.94691| 0.94232| 0.93046] 0.97125| 0.85294| 0.95912| 0.81754| 0.8203| 0.95695|
MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 0.95244| 0.94399| 0.94215| 0.98888| 0.9566| 0.97735| 0.9385| 0.85257| 0.97283| 0.83317| 0.83669| 0.97034
MultiClassClassifier_MultiBoost 13 BayesNet_351.txt 0.98553] 0.93192| 0.93593| 0.95156| 0.95611 0.944| 0.98138| 0.87659| 0.96213| 0.833| 0.83355| 0.96838
MultiClassClassifier | t_BayesNet 351.txt 0.98393| 0.93102( 0.93526| 0.95064| 0.95636| 0.94397| 0.98225| 0.87929] 0.96175| 0.83723| 0.83944| 0.96753|
RF_225_10_137.txt 0.83313]| 0.82964| 0.82959 0.816]| 0.91792| 0.90132| 0.91557| 0.93039] 0.88832| 0.90597| 0.90628| 0.89999
RF_225_5_137.txt 0.79978] 0.7999] 0.79736] 0.78711] 0.91203[ 0.9099| 0.91702| 0.94059| 0.88278| 0.93437| 0.93507| 0.88576
RF_225 5 _173.txt 0.82815) 0.83738| 0.83268| 0.82275| 0.92327) 0.90683| 0.9116| 0.92898| 0.89363| 0.92092| 0.91625| 0.90172
_173noind.txt 0.79667| 0.81228( 0.80498| 0.79427| 0.91798| 0.91263| 0.90728| 0.93577| 0.88538| 0.94041| 0.93343| 0.89009
_ _364.txt 0.80081] 0.79165[ 0.79162| 0.78243| 0.9108| 0.90729| 0.91957| 0.94509] 0.88007| 0.92927| 0.93053| 0.88114|
RF_225_5_383.txt 0.79608| 0.80361[ 0.79783| 0.79404| 0.9186| 0.91745| 0.91457| 0.94305| 0.88955| 0.94435| 0.94401| 0.89096
. _408.txt 0.80449 0.799| 0.80027 0.7905| 0.9185| 0.91505| 0.92125| 0.94953| 0.88901| 0.93231| 0.93014] 0.88652
RF_225 5_419.txt 0.7948| 0.80187| 0.79724| 0.78166| 0.91577| 0.90423| 0.91193| 0.94255| 0.87971| 0.92594| 0.93018| 0.88735
ZeroR173.txt 0.01426| -0.02077] -0.03008| -0.02408] 0.50884| 0.54544| 0.57443| 0.82786| 0.36253| 0.63011] 0.61432| 0.35506]

94

Table D.2: (Page 2 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.

www.manaraa.com



v g B 2 B g B 3 B
S = < w I S g 5 =
5 o 4 2 3 4 8 & &
Bl 8 8 8 s & & & &
[attri |_Bagging_15_RBF_7_56.txt
BayesNet_109.txt.
BayesNet_351.ixt
BayesNet_356.txt
BayesNet_53.txt
BayesNet_56.txt
BayesNet_57.txt
C itive(E_1.8)_MultiClassClassifier_| 13 BayesNet 351.ixt
CostSensitive(E_2.0)_Logistic_344_nolnd.ixt
C itive(E_2.0)_Logistic_86.txt
C = 2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt
C - 2.0)_RF_225_5_383.txt
CostSensitive(H_1.8) MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
C itive(H_2.0)_Logistic_344_nolnd.txt
@ i_2.0)_Logistic_86.txt
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_109.txt
CostSensitive(N_1.2) Logistic_344_nolnd.txt
C itive(N_1.8)_MultiClassClassifier_| 13 BayesNet_109.txt
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
CostSensitive(N_2.0)_Logistic_86.txt
DTNB_109.txt
1BK_60_w_173.txt
[1BK_60_w_344.txt
Logistic_0.txt
Logistic_1.txt 1]
Logistic_109.txt 0.99024) 1]
Logistic_137.txt 0.98912| 0.99346 1]
Logistic_150.txt 0.98851| 0.98966( 0.9931]
Logistic_18.txt 0.99048| 0.99331| 0.99209 1
Logistic_194.txt 0.99421| 0.99544| 0.99312 0.99116 1
Logistic_195.txt 0.99162| 0.99267| 0.99234 0.99025| 0.9936 1
Logistic_196.txt 0.989] 0.99366| 0.99406] 0.99154| 0.99097| 0.99354 1
Logistic_197.txt 0.99156| 0.99284| 0.9948 0.9964| 0.99669 3
Logistic_222.txt 0.99209] 0.99509| 0.99297 0.99011]| 0.99102 1]
Logistic_344.txt 0.995| 0.99512| 0.99236| 0.99228| 0.99227| 0.99568 1]
Logistic_347.txt 0.99211] 0.99279| 0.99046 0.99104] 0.99207| 0.99157| 0.99406 1
Logistic_348.txt 0.99175 D.99321| 0.99262| 0.99163| 0.99358 0.99227[ 0.99371| 0.99936)
Logistic_352.txt 0.98696| 0.99328| 0.98716 64 0.98771| 0.98804| 0.99636| 0.9923] 0.9892
Logistic_356.txt 0.99005| 0.98781| 0.99127] 0.99273| 0.9847 0.98553] 0.98849| 0.98982| 0.99152] 0.98621
Logistic_364.txt 0.98601| 0.99187| 0.99714| 0.99396| 0.98834| 0.99057| 0.99285| 0.99245| 0.99006| 0.98569)
Logistic_383.txt 0.99269] 0.99663| 0.99604| 9199| 0.99404) 0.99395 528 9599| 0.99687| 0.99354
Logistic_408.txt 0.98456| 0.99445| 0.99501| 0.99017| 0.98924| 0.99383| 0.99223| 0.99029| 0.9901| 0.98897|
Logistic_458.txt 0.99356| 0.99474| 0.99286| 0.98787| 0.99794 0.99248| 0.99409| 0.99331| 0.99461| 0.99824
Logistic_459.txt 0.99289| 0.99468| 0.99302| 0.98717| 0.99832 0.9929] 0.99446| 0.9931| 0.99387| 0.99743|
Logistic_86.txt 0.99021] 0.99547| 0.99351| 0.99036| 0.99045 E 0.99649] 0.99579| 0.99256| 0.99403] 0.98879
Logistic_98.txt 0.98572| 0.98422| 0.98108| 0.97923| 0.98321| 0.9799| 0.98526| 0.9816| 0.98615) 0.98111| 0.98004| 0.98618
LogitBoost_285_DecisionStump_18.txt 0.9857| 0.98912| 0.98712| 0.98225| 0.99543| 0.98642| 0.98579| 0.98642| 0.98862| 0.98645| 0.98702| 0.98851
LogitBoost_285_Deci: )_344.txt 0.98985| 0.9904| 0.98679| 0.98771| 0.98569| 0.99281| 0.98792| 0.98684| 0.98618| 0.99023| 0.99553| 0.98828|
MAX_RF_225_5(63.5148).txt 0.91973]| 0.92734 0.9347| 0.92625| 0.92306| 0.92745| 0.92539| 0.92577] 0.93065| 0.92539] 0.92782| 0.92523
MLP_H62_53.txt 0.87635| 0.88516( 0.87974| 0.87994| 0.87793| 0.88726| 0.88426| 0.87609| 0.87708( 0.88844( 0.88211| 0.87452]
0.94179| 0.95753| 0.95775| 0.95318| 0.9508| 0.95397| 0.95008| 0.95175| 0.9517| 0.95601| 0.95018| 0.94794|
0.85417] 0.86865| 0.85476| 0.86063| 0.85577| 0.87431| 0.86229| 0.84936| 0.85373| 0.87362| 0.86723| 0.85016
0.94447| 0.94442( 0.94695| 0.95147| 0.93657| 0.94745| 0.94408| 0.94043| 0.94259| 0.94588| 0.94874| 0.9406]
0.94884| 0.96212| 0.96189| 0.95805| 0.95602| 0.95815| 0.95554| 0.9567| 0.9562| 0.96051] 0.9545| 0.95376]
MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 0.96265| 0.97262| 0.96702| 0.96394| 0.96527| 0.96966| 0.96319| 0.96454| 0.96389| 0.96898| 0.96886| 0.96516
MultiClassClassifier_MultiBoost 13 BayesNet_351.txt 0.95921| 0.97271| 0.97212| 0.96611| 0.96603| 0.96773| 0.96601| 0.96806| 0.96806| 0.96987| 0.96459| 0.96331
MultiClassClassifier | t_BayesNet 351.txt 0.9587| 0.97203| 0.97122 0.9652| 0.96563| 0.96653| 0.96573| 0.96733| 0.96785| 0.96904| 0.96387| 0.96295
RF_225_10_137.txt 0.89305| 0.89957| 0.90469| 0.90054| 0.89532| 0.89725| 0.89972| 0.89683| 0.90001| 0.89617| 0.89895| 0.89742]
RF_225_5_137.txt 0.87328| 0.87992[ 0.88937| 0.8827| 0.87588| 0.87889| 0.88135] 0.8767| 0.88018| 0.87878| 0.88143 0.88]
RF_225 5 _173.txt 0.89549) 0.90076| 0.89628| 0.89591] 0.89409| 0.90332| 0.89965| 0.89184] 0.89456| 0.90169] 0.9025| 0.89947|
RF_225 5_173nolnd.txt 0.88147| 0.88894( 0.87973| 0.8835| 0.8786| 0.89145| 0.88621| 0.87653| 0.87823| 0.89111] 0.89057| 0.88421]
|RE_225_5_364.txt 0.87018| 0.8778| 0.88484| 0.88595| 0.87308| 0.87976| 0.88486| 0.87365| 0.87931| 0.88039| 0.87933| 0.86933
RF_225_5_383.txt 0.87828| 0.88684| 0.88518| 0.88472| 0.88225| 0.88731| 0.88732| 0.88182| 0.88548| 0.88657| 0.89201| 0.88471
RF_225 5_408.txt 0.87622| 0.88914( 0.88751| 0.88872| 0.8805| 0.88447| 0.88632| 0.88348| 0.88567| 0.88422| 0.88768| 0.88309
RF_225 5_419.txt 0.87695| 0.88058( 0.88822| 0.88716| 0.88218| 0.88253| 0.8882| 0.88187| 0.88744| 0.88239| 0.88722| 0.88476]
ZeroR173.txt 0.36112| 0.35326| 0.35148| 0.36651| 0.35133| 0.35448| 0.37348| 0.35636| 0.35897) 0.35614| 0.35729| 0.35637

Table D.3: (Page 3 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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[at |_Bagging_15_RBF_7_56.txt
BayesNet_109.txt.
BayesNet_351.ixt
BayesNet_356.txt
BayesNet_53.txt
BayesNet_56.txt
BayesNet_57.txt
C itive(E_1.8) MultiClassClassifier | 13 BayesNet 351.ixt
CostSensitive( )_Logistic_344_nolnd.txt
C itive(E_2.0)_Logistic_86.txt
C itive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt
C itive(E_2.0)_RF_225 5_383.txt
CostSensitive(H_1.8) MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
C itive(H_2.0)_Logistic_344_nolnd.txt
@ itive(H_2.0)_Logistic_86.txt
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_109.txt
CostSensitive(N_1.2) Logistic_344_nolnd.txt
C itive(N_1.8)_MultiClassClassifier_| 13 BayesNet_109.txt
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
CostSensitive(N_2.0)_Logistic_86.txt
DTNB_109.txt
1BK_60_w_173.txt
[1BK_60_w_344.txt
Logistic_0.txt
Logistic_1.txt
Logistic_109.txt
Logistic_137.txt
Logistic_150.txt
Logistic_18.txt
Logistic_194.txt
Logistic_195.txt
Logistic_196.txt
Logistic_197.txt
Logistic_222.txt
Logistic_344.txt
Logistic_347.txt
Logistic_348.txt 1]
Logistic_352.txt 0.98918 1
Logistic_356.txt 0.98698| 0.98523 1]
Logistic_364.txt 0.98789| 0.9872| 0.99261 1]
Logistic_383.txt 0.99446] 0.99255| 0.99074| 0.99451 1
Logistic_408.txt 0.99008| 0.98732| 0.98626| 0.99554| 0.99428 i
Logistic_458.txt 0.99839| 0.99098( 0.98695| 0.98814| 0.99553| 0.98976 21
Logistic_459.txt 0.99816| 0.9915| 0.98666| 0.98842| 0.99529| 0.99024| 0.99976 1
Logistic_86.txt 0.98945]| 0.99091| 0.98828| 0.99293 9524 0.99428| 9112 1
Logistic_98.txt 0.98523] 0.98152| 0.98003| 0.98142| 0.98171| 0.98259 .98477| 0.98131 il
LogitBoost_285_DecisionStump_18.txt 0.98903| 0.98457( 0.98083| 0.98279| 0.98914| 0.98444( 0.99314]| 0.99323| 0.98577| 0.9784 1
LogitBoost_285_Deci: )_344.txt 0.988| 0.98665| 0.9877| 0.98405| 0.99192| 0.9837| 0.98889| 0.98805| 0.98849( 0.97204| 0.98434| i
MAX_RF_225_5(63.5148).txt 0.9265| 0.91477| 0.92443| 0.93003| 0.93249] 0.92351]| 0.92628| 0.92573| 0.92524] 0.90131] 0.9239
MLP_H62_53.txt 0.87579| 0.88661| 0.87598| 0.88218| 0.88413| 0.87501| 0.87584| 0.87785| 0.87703| 0.86848| 0.88117
MultiBoost_10_BayesNet_351.txt 0.94913| 0.95125[ 0.94758| 0.95995| 0.95657| 0.95919 5087| 0.95408 93481| 0.94433
MultiBoost 10 _MLP_H62_56.txt 0.85158)| 0.86913| 0.8586| 0.85833| 0.86808| 0.85098| 0.85529| 0.85515| 0.85658| 0.83254| 0.86664| 0.87851
MultiBoost_15_BayesNet_356.txt 0.94102] 0.93929| 0.95549| 0.94985| 0.9468| 0.94054| 0.94119| 0.94007| 0.94485| 0.92852[ 0.93245| 0.94315
|MuIt\ClaSSCIHSSifierﬁBayeSNetﬁSSl.txt 0.9546| 0.95656| 0.95294| 0.96342| 0.95997| 0.96246| 0.95628| 0.95688| 0.95792| 0.94289| 0.95237| 0.34976
MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 0.96441| 0.96681| 0.96175| 0.96402| 0.97131) 0.96571| 0.96744| 0.96683] 0.96594| 0.9531] 0.96329| 0.96463
MultiClassClassifier_MultiBoost 13 BayesNet_351.txt 0.96502| 0.96627| 0.96345| 0.97314| 0.97181| 0.97322| 0.96674| 0.96724| 0.96928| 0.95492| 0.96132| 0.95943|
MultiClassClassifier | t_BayesNet 351.txt 0.9648| 0.96581| 0.96243| 0.97236| 0.97103| 0.97233| 0.96647| 0.96692| 0.96896| 0.95411| 0.96131| 0.95861
RF_225_10_137.txt 0.89841| 0.89097| 0.89929| 0.90056| 0.89914 0.898| 0.89646| 0.89623| 0.8963| 0.89022| 0.89903] 0.89983
RF_225_5_137.txt 0.88118| 0.86647| 0.88275| 0.88548| 0.88365| 0.87788| 0.87932| 0.87745| 0.87544| 0.85208| 0.88414] 0.88765
RF_225 5 _173.txt 0.89925) 0.89794| 0.89843| 0.89262| 0.90135| 0.89132| 0.89729| 0.89617| 0.89246| 0.88722| 0.89961| 0.90745
_173noind.txt 0.88384| 0.88641[ 0.88003| 0.87445| 0.88839| 0.87444| 0.88232| 0.88073| 0.88005| 0.86239| 0.88485| 0.8996
_ _364.txt 0.87225| 0.87012| 0.88455| 0.89254| 0.88207| 0.8775| 0.87173| 0.87108| 0.87718| 0.86068| 0.88194| 0.88549
RF_225_5_383.txt 0.88504| 0.87744| 0.88133| 0.88388| 0.89165| 0.87855| 0.88465| 0.88295| 0.88171| 0.8574 0.89175| 0.8981
. _408.txt 0.8851| 0.87815| 0.88166] 0.89013| 0.88887| 0.89019| 0.8818| 0.88082| 0.88494| 0.86769| 0.88821| 0.89202
RF_225 5_419.txt 0.88748| 0.87662( 0.88705| 0.88574| 0.88698| 0.87786| 0.88397| 0.88361| 0.88127| 0.8647| 0.88889| 0.89108|
ZeroR173.txt 0.3577| 0.36047| 0.37144| 0.3544] 0.34765| 0.35911| 0.34642| 0.34542| 0.35616| 0.38729] 0.38364| 0.37809)]

Table D.4: (Page 4 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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- 109.txt
- 351.ixt
t 351.txt

yesNet
yesNet

yesNet

t 351.txt

t 351.txt

t_356.txt

yesNe!
MultiBoost_13_Bay

yesNe
r_Ba

(63.5148).txt
yesNet

assClassifier_MultiBoost_Ba

oost_10_Ba

MultiClassClassifier_MultiBoost_13_Ba:

[MultiBoost_10_MLP_H62_56.txt

RF_225_10_137.txt

IMAX_RF_225_5|
MLP_H62_53.txt
[MultiBoost_15_Ba
RF_225_5_137.txt
RF_225_5_173.txt

[at |_Bagging_15_RBF_7_56.txt
BayesNet_109.txt.

BayesNet_351.ixt

BayesNet_356.txt

BayesNet_53.txt

BayesNet_56.txt
BayesNet_57.txt
C itive(E_1.8)_MultiClassClassifier_Multil 13 BayesNet 351.ixt
CostSensitive( )_Logistic_344_nolnd.txt

C itive(E_2.0)_Logistic_86.txt

C itive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt
C itive(E_2.0)_RF_225 5_383.txt

CostSensitive(H_1.8) MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
C itive(H_2.0)_Logistic_344_nolnd.txt

@ itive(H_2.0)_Logistic_86.txt
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_109.txt
CostSensitive(N_1.2) Logistic_344_nolnd.txt
C itive(N_1.8)_MultiClassClassifier_Multi 13 BayesNet_109.txt
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt
CostSensitive(N_2.0)_Logistic_86.txt
DTNB_109.txt

1BK_60_w_173.txt

[1BK_60_w_344.txt

Logistic_0.txt

Logistic_1.txt

Logistic_109.txt

Logistic_137.txt

Logistic_150.txt

Logistic_18.txt

Logistic_194.txt

Logistic_195.txt

Logistic_196.txt

Logistic_197.txt

Logistic_222.txt

Logistic_344.txt

Logistic_347.txt

Logistic_348.txt

Logistic_352.txt

Logistic_356.txt

Logistic_364.txt

Logistic_383.txt

Logistic_408.txt

Logistic_458.txt

Logistic_459.txt

Logistic_86.txt

Logistic_98.txt
LogitBoost_285_DecisionStump_18.txt.
LogitBoost_285_Deci _344.txt
MAX_RF_225_5(63.5148).txt 1]
MLP_H62_53.txt 0.83077] 1
MultiBoost_10_BayesNet_351.txt 0.91945| 0.82061 1
MultiBoost 10 _MLP_H62_56.txt 0.81538) 0.91062| 0.79776 1]
MultiBoost_15_BayesNet_356.txt 0.91062| 0.81718| 0.97496| 0.80341 1
|MuIt\ClaSSCIHSSifierﬁBayeSNetﬁiSl.txt 0.92975| 0.84028| 0.99463| 0.81664| 0.96951 il
MultiClassClassifier_MultiBoost_13 BayesNet 109.txt 0.92782] 0.85305[ 0.96119]| 0.83638| 0.94968| 0.96154 1
MultiClassClassifier_MultiBoost 13 BayesNet_351.txt 0.92601| 0.85299| 0.98673| 0.82848| 0.95926| 0.98771| 0.96818 1]
MultiClassClassifier | t_BayesNet 351.txt 0.92702| 0.85434| 0.98682| 0.83175]| 0.95915| 0.98914| 0.96831| 0.99959 1
RF_225_10_137.txt 0.89918 0.851) 0.83051| 0.84508| 0.8197| 0.86362| 0.85505| 0.87054| 0.87183 1]

RF_225 5_137.txt 0.87355| 0.84623( 0.80129| 0.8532| 0.78542| 0.83703| 0.83816| 0.85276| 0.85669| 0.97209 1
RF_225 5 _173.txt 0.88957| 0.86578| 0.8237| 0.86306| 0.8166| 0.85685| 0.85995| 0.86613| 0.86821| 0.9813| 0.96257 1)
_173noind.txt 0.86021| 0.86249( 0.79278| 0.87005| 0.78424| 0.82838| 0.84318| 0.84615| 0.84941| 0.97213| 0.97379| 0.98109|
_ _364.txt 0.85887| 0.85421| 0.79802| 0.86198] 0.79142| 0.83592| 0.83499| 0.85395| 0.85745| 0.96806| 0.98389| 0.96209
RF_225_5_383.txt 0.86657| 0.85473| 0.79822| 0.86698| 0.77934| 0.8325| 0.84446| 0.84955| 0.85379| 0.96308| 0.98225| 0.96607|
. _408.txt 0.86031| 0.85246( 0.80648| 0.85582| 0.78388| 0.84058| 0.84378| 0.85736| 0.86253| 0.96763| 0.9803| 0.96613|
RF_225 5_419.txt 0.86056| 0.84857( 0.79199| 0.85456| 0.79579| 0.82802| 0.83109| 0.84478| 0.84911| 0.96821| 0.97787| 0.96503|
ZeroR173.txt 0.10546| 0.49235| 0.12868| 0.5571| 0.12419| 0.19661| 0.18165| 0.25047| 0.25952) 0.68029| 0.76781| 0.6784)

Table D.5: (Page 5 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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RF_225_5_364.txt
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RF_225_5_408.txt

RF 225 5 419.txt

|ZeroR173.txt

i Bagging 15 RBF_7_56.txt

BayesNet_109.txt

BayesNet_351.txt

BayesNet_356.txt

BayesNet_53.txt

BayesNet_56.txt

BayesNet_57.txt
& =

1.8) MultiClassClassifier_| 13 BayesNet 35Lixt

CostSensitive( )_Logistic_344_nolnd.txt
E itive(E_2.0) Logistic_86.txt

C itive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt

C itive(E_2.0) RF 225 5 383.txt
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C itive(H_2.0) Logistic_86.txt

CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13 BayesNet_109.txt

CostSensitive(N_1.2) Logistic_344_nolnd.txt
= =

|_1.8)_MultiClassClassifier_ 13 BayesNet_109.txt

CostSensitive(N_1.8) MultiClassClassifier_MultiBoost_13_BayesNet 351.txt

CostSensitive(N_2.0)_Logistic_86.txt

DTNB_109.txt

IBK_60_w_173.txt

[1BK_60_w_344.txt

Logistic_0.txt

Logistic_L.txt

Logistic_109.txt

Logistic_137.txt

Logistic_150.txt

Logistic_18.txt

Logistic_194.txt

Logistic_195.txt

Logistic_196.txt

Logistic_197.txt

Logistic_222.txt

Logistic_344.txt

Logistic_347.txt

Logistic_348.txt

Logistic_352.txt

Logistic_356.txt

Logistic_364.txt

Logistic_383.txt

Logistic_408.txt

Logistic_458.txt

Logistic_459.txt

Logistic_86.txt

Logistic_98.txt

LogitBoost_285_DecisionStump_18.txt

LogitBoost_285_Deci _344.xt

MAX_RF_225_5(63.5148).txt

MLP_H62_53.txt

MultiBoost_10_BayesNet_351.txt

MultiBoost_10_MLP_H62_56.txt

MultiBoost_15_BayesNet_356.txt

|MultiClassClassifier_BayesNet_35L.txt

MultiClassClassifier_MultiBoost_13 BayesNet_109.txt

MultiClassClassifier_MultiBoost_13_BayesNet_351.txt

MultiClassClassifier_|  BayesNet 35L.txt

RF_225_10_137.txt

RF 225 5 137.xt

RF_225_5_173.txt

_173nolnd.txt

1

_364.txt

0.97378|

1

RF_225_5_383.0xt

0.97892

0.98081]

1]

_408.txt

0.9766

0.982]

0.98097

5l

RF_225 5 419.txt

0.97324

0.97792

0.97794

0.97496

1

ZeroR173.txt

0.74913]

0.7775

0.76346

0.77572

0.76769

98

Table D.6: (Page 6 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Appendix E

(Table E)

Times used in ensembles | Times used in ensembles | Times used in
Classifier of 3 of 5 ensembles of 7
AttributeSelected_Bagging_15_RBF_7_56.txt 0 91 459
BayesNet_109.txt 0 163 681
BayesNet_351.txt 0 0 1896
BayesNet_356.txt 0 0 1259
BayesNet_53.txt 0 0 494
BayesNet_56.txt 0 0 3454
BayesNet_57.txt 0 0 371
CostSensitive(E_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 0 44 688
CostSensitive(E_2.0)_Logistic_344_nolnd.txt 0 14 635
CostSensitive(E_2.0)_Logistic_86.txt 0 0 386
CostSensitive(E_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt 0 137 2903
CostSensitive(E_2.0)_RF_225_5_383.txt 0 0 1099
CostSensitive(H_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 0 0 1512
CostSensitive(H_2.0)_Logistic_344_nolnd.txt 0 0 2712
CostSensitive(H_2.0)_Logistic_86.txt 0 0 456
CostSensitive(H_2.0)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt 4 83 4691
CostSensitive(N_1.2)_Logistic_344_nolnd.txt 0 0 2457
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_109.txt 0 0 2164
CostSensitive(N_1.8)_MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 0 1820
CostSensitive(N_2.0)_Logistic_86.txt 1 1789
DTNB_109.txt 3 3725
1BK_60_w_173.txt 0 681
1BK_60_w_344.txt 0 5 3379
Logistic_0.txt 0 13 0
Logistic_1.txt 1 25 0
Logistic_109.txt 0 2 0
Logistic_137.txt 0 4 0
Logistic_150.txt 0 9 0
Logistic_18.txt 0 3 0
Logistic_194.txt 0 16 0
Logistic_195.txt 0 9 0
Logistic_196.txt 0 14 0
Logistic_197.txt 0 43 0
Logistic_222.txt 0 8 0
Logistic_344.txt 0 8 0
Logistic_347.txt 1 2 0
Logistic_348.txt 0 7 ] 0
Logistic_352.txt 2 12 0
Logistic_356.txt 0 17 0
Logistic_364.txt 0 ¥4 0
Logistic_383.txt 0 6 0
Logistic_408.txt 0 7 [
Logistic_458.txt 0 14 0
Logistic_459.txt 0 0 0
Logistic_86.txt 0 2 0
Logistic_98.txt 0 14 0
LogitBoost_285_DecisionStump_18.txt 0 0 0
LogitBoost_285_DecisionStump_344.txt 0 0 0
MAX_RF_225_5(63.5148).txt 0 0 0
MLP_H62_53.txt 0 0 0
_10_BayesNet_351.txt 0 0 0
MultiBoost_10_MLP_H62_56.txt 0 0 0
MultiBoost_15_BayesNet_356.txt 0 4 0
MultiClassClassifier_BayesNet_351.txt 0 58 0
MultiClassClassifier_MultiBoost_13_BayesNet_109. txt 0 3 0
MultiClassClassifier_MultiBoost_13_BayesNet_351.txt 0 5 0
MuttiClassClassifier_MultiBoost_BayesNet_351.txt 0 44 0
RF_225_10_137.txt 0 9 0
RF_225_5_137.txt 0 23 0
= 225! R 0 78 0
RF_225_5_173nolnd.txt 0 11 0
RF_225_5_364.txt 0 0 0
RF_225_5_383.txt 0 0 0
RF_225_5_408.txt 0 0 0
RF_225_5_419.txt 0 0 0
ZeroR173 .txt 0 0 0

Table E.1: These are the number of times each classifier was used in ensembles that achieved
at least 66% Q3 accuracy in the first round of majority-vote ensembles, as explained in section

4.2.1.3.
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Appendix F

(Table F)
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Attributeselected_Bagging_15_RBF_7_56.txt 1
DTNB_109.txt 0.91072 1
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt 0.84788| 0.93009 il
EVEN_MultiBoost_13_BayesNet_(61.5).txt 0.80013| 0.90961| 0.95008]] £
EVEN_MultiBoost_13_Logistic_(63.3).txt 0.83138| 0.92795| 0.98985| 0.95367, 1
EVEN_RF_225_5(63.0023).txt 0.83409| 0.88769| 0.92539| 0.92027| 0.93105 1
IBK_60_w_344.txt 0.88468| 0.87504| 0.76627| 0.70324| 0.75272| 0.77359 1
LogitBoost_285_Decisi _173.txt 0.92599| 0.97005| 0.96477| 0.90413| 0.94973| 0.89099| 0.88976 1
LogitBoost 285 DecisionStump_344.txt 0.92095| 0.97038| 0.95734| 0.90219| 0.95646| 0.89855( 0.89625| 0.99121/
MAX_Logistic_(65.8767).txt 0.92598| 0.96812| 0.92632| 0.88052| 0.93002| 0.87617 0.90917 0.988]
MAX_MultiBoost_13_BayesNet_(64.3021).txt 0.89438] 0.96792| 0.93228| 0.96531| 0.92785] 0.90005| 0.84493| 0.96136,
MAX_RF_225 5(65.0689).txt 0.91569| 0.92167| 0.86466| 0.85518| 0.86674| 0.92602 0.899( 0.92499
MLP_H62_53.txt 0.86771| 0.86709| 0.82096| 0.7636) 0.79745| 0.78982( 0.84035| 0.89177
RAISE_EN_LogitBoost_285_Decisit _173 (70.9).txt 0.73627| 0.79959| 0.92631| 0.87797| 0.92864| 0.85985| 0.63592| 0.83605
RAISE_EN_MultiBoost_13 BayesNet_(71.3).txt 0.5533| 0.70567| 0.74073| 0.80871| 0.75692] 0.715| 0.42388| 0.71198
RAISE_EN_MultiBoost_13_Logistic_(70.2).txt 0.7758| 0.8556| 0.95023| 0.91756| 0.9708| 0.89689| 0.68067( 0.88558
RAISE_EN_RF_225_5(70.2).txt 0.7407| 0.77863| 0.85232| 0.85119| 0.86451] 0.9135| 0.65681| 0.8005
RAISE_E_LogitBoost_285_DecisionStump_173 (78.3).txt 0.67164] 0.79454| 0.96035| 0.92031| 0.9597) 0.89197| 0.53675| 0.84522)
RAISE_E _| i .13 BayesNet_(84.4).txt 0.49187| 0.65826| 0.8594| 0.92082| 0.87373| 0.84228| 0.33675| 0.66884
RAISE_E_MultiBoost_13_Logistic_(70.9).txt 0.77077| 0.88894| 0.98188| 0.94886| 0.99617| 0.9239| 0.67413| 0.91213
RAISE_E_RF_225_5(86.9).txt. 0.45283| 0.57248| 0.81443| 0.82149( 0.8337| 0.86636| 0.32816| 0.58895
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt 0.51367| 0.68962] 0.90988| 0.85524] 0.89178| 0.81634] 0.39119| 0.70659
RAISE_HE _| i 13 BayesNet (71.3).txt 0.49276| 0.69374| 0.85676| 0.91728| 0.86391| 0.81661| 0.3681| 0.67318
RAISE_HE_MultiBoost_13_Logistic_{73.6).txt 0.49444| 0.68698| 0.88236| 0.85456( 0.90797| 0.8159 0.3811| 0.68467
RAISE_HE_RF_225_5(74.4).txt 0.4082| 0.56902| 0.78655| 0.78448| 0.79464| 0.82197| 0.29915| 0.55571
RAISE_HN_LogitBoost_285_DecisionStump_173_(72.1).txt 0.93087| 0.95765| 0.92598| 0.84088| 0.89445| 0.83228| 0.91065| 0.98024
RAISE_HN_MultiBoost_13_BayesNet_(71.3).txt 0.90153| 0.93643] 0.83036] 0.87345] 0.81571] 0.79908] 0.87771[ 0.92767,
RAISE_HN_| i - 13 _Logistic_(70.4).txt 0.91333| 0.96682| 0.94664| 0.88922| 0.94798| 0.87804| 0.88525| 0.98361|
RAISE_HN_RF_225_5(74.4).txt 0.89006]| 0.87361| 0.73029] 0.6983| 0.71432| 0.78028| 0.91005]| 0.86728
RAISE_H_LogitBoost_285_Decisit ) 173 (78.1).txt 0.7982| 0.89743| 0.96397| 0.90772| 0.94972| 0.8796| 0.72202| 0.91977
RAISE_H_MultiBoost_13_BayesNet_(84.4).txt 0.6967| 0.81835| 0.84558| 0.87085| 0.83605| 0.79527| 0.61621| 0.78723
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0.72401| 0.83236| 0.88011] 0.827| 0.86891| 0.79658| 0.66669| 0.82367
RAISE_H_RF_225_5(91.6).txt 0.58116| 0.66832| 0.71299| 0.68691| 0.69168| 0.70391| 0.52848| 0.63689
RAISE_N_LogitBoost 285 DecisionStump_173 (90.7).txt 0.85958| 0.84845| 0.71163| 0.67334| 0.69519] 0.6851| 0.86147| 0.87922
RAISE_N_MultiBoost_13_BayesNet_(85).txt 0.86574| 0.9014| 0.79667| 0.8337( 0.79861| 0.80081| 0.83107| 0.89879
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.8897| 0.90147| 0.77434| 0.75102| 0.78575| 0.75928| 0.8861 0.922]
RAISE_N_RF_225_5(86).txt 0.87912| 0.86652| 0.77264| 0.76532| 0.77307| 0.83268| 0.86812| 0.87793

Table F.1: (Page 1 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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AttributeSelected_Bagging_15_RBF_7_56.txt
DTNB_109.txt
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt
EVEN_MultiBoost_13_BayesNet_(61.5).txt
EVEN_MultiBoost_13_Logistic_(63.3).txt
EVEN_RF_225_5(63.0023).txt
IBK_60_w_344.txt
LogitBoost_285_ DecisionStump_173.txt
LogitBoost 285 DecisionStump_344.txt 1
MAX_Logistic_(65.8767).txt 0.99169 1
MAX_MultiBoost_13_BayesNet_(64.3021).txt 0.95817| 0.96026 1
MAX_RF_225_5(65.0689).txt 0.93133| 0.93701]| 0.92641 1
MLP_H62_53.txt 0.88588| 0.89261| 0.85552| 0.86704 1
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt 0.83194| 0.83844| 0.84216] 0.8256| 0.75783 1
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt 0.70489| 0.71191| 0.82874| 0.71468| 0.58048| 0.89653 ai
RAISE_EN_MultiBoost_13_Logistic_(70.2).txt 0.88417| 0.88974| 0.88834| 0.85456| 0.77929| 0.98755| 0.88031 1
RAISE_EN_RF_225_5(70.2).txt 0.80445| 0.80427| 0.82209| 0.87556| 0.72924| 0.93941| 0.87126| 0.93629
RAISE_E_LogitBoost_285_DecisionStump_173_(78.3).txt 0.83397] 0.78137] 0.81428[ 0.72667] 0.66816] 0.91809] 0.68673] 0.94043
RAISE_E_MultiBoost_13_BayesNet_(84.4).txt 0.66202| 0.60477| 0.75602| 0.61023| 0.50444| 0.8409| 0.62731| 0.8704
RAISE_E_MultiBoost_13_Logistic_(70.9).txt 0.91855| 0.88222| 0.89323| 0.81994| 0.74327| 0.92288| 0.72318| 0.95929
RAISE_E_RF_225 5(86.9).txt 0.59537| 0.52504| 0.62658| 0.6178| 0.47132| 0.82183] 0.59175| 0.8418
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt 0.70481| 0.58793| 0.68019| 0.53466| 0.49962| 0.62321] 0.21032| 0.71525
RAISE_HE_MultiBoost_13_BayesNet_(71.3).txt 0.67363| 0.57528| 0.75017| 0.54028| 0.46807| 0.59353| 0.20179]| 0.69238
RAISE_HE_MultiBoost_13_Logistic_(73.6).txt 0.70272| 0.59285| 0.67567| 0.52881| 0.47101| 0.60001| 0.18978| 0.70261
RAISE_HE_RF_225_5(74.4).txt 0.56979| 0.4437| 0.57393| 0.49473| 0.38515| 0.47261| 0.04004| 0.58532
RAISE_HN_LogitBoost 285 DecisionStump_173_(72.1).txt 0.97409] 0.97082] 0.9343] 0.90004] 0.8826] 0.65346] 0.50012| 0.73958
RAISE_HN_MultiBoost_13_BayesNet (71.3).txt 0.9273| 0.92704| 0.94016| 0.87773| 0.83485| 0.55186| 0.44215| 0.64819
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0.98723] 0.98041] 0.94973] 0.90409] 0.86772] 0.73582] 0.59166] 0.80418
RAISE_HN_RF 225 5(74.4).txt 0.87551| 0.87858| 0.84373| 0.87657| 0.81741| 0.42494| 0.21314]| 0.52584
RAISE_H_LogitBoost 285 DecisionStump_173 (78.1).txt 0.91193| 0.85458| 0.88171| 0.78026| 0.76346| 0.7458| 0.46061| 0.80762
RAISE_H_MultiBoost_13_BayesNet (84.4).txt 0.79173| 0.71736| 0.80949| 0.65511| 0.64582| 0.47108| 0.20506| 0.58612
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0.82956| 0.75537| 0.79886| 0.67281| 0.67718| 0.52466| 0.18033| 0.63789
RAISE_H _RF 225 5(91.6).txt 0.64662| 0.54205| 0.6166] 0.51868| 0.51957| 0.2163| -0.1717| 0.34925
RAISE_N_LogitBoost 285 DecisionStump_173_(90.7).txt 0.8719] 0.92607| 0.85892| 0.89337| 0.84215| 0.86909| 0.74656| 0.83615
RAISE_N_MultiBoost_13_BayesNet_(85).txt 0.89704| 0.92743| 0.93944| 0.91794| 0.83386| 0.87954| 0.83456| 0.88052
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.92053| 0.96197| 0.90545| 0.92177| 0.86308| 0.86641| 0.73296| 0.87918
RAISE_N_RF_225_5(86).txt 0.87961| 0.91065| 0.88319| 0.95629| 0.83638| 0.85846| 0.78501| 0.85654

Table F.2: (Page 2 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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AttributeSelected_Bagging_15_RBF_7_56.txt
DTNB_109.txt
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt
EVEN_MultiBoost_13_BayesNet_(61.5).txt
EVEN_MultiBoost_13_Logistic_(63.3).txt
EVEN_RF_225_5(63.0023).txt
IBK_60_w_344.txt
LogitBoost_285_ DecisionStump_173.txt
LogitBoost_285 DecisionStump_344.txt
MAX_Logistic_(65.8767).txt
MAX_MultiBoost_13_BayesNet_(64.3021).txt
MAX_RF_225_5(65.0689).txt
MLP_H62 53.txt
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt
RAISE_EN MultiBoost_13_Logistic_(70.2).txt
RAISE_EN_RF_225_5(70.2).txt 1
RAISE_E_LogitBoost_285_DecisionStump_173_(78.3).txt 0.86408 il
RAISE_E_MultiBoost_13_BayesNet_(84.4).txt 0.82154| 0.94769 1
RAISE_E_MultiBoost_13_Logistic_(70.9).txt 0.86407 0.98| 0.9175 1
RAISE_E_RF_225 5(86.9).txt 0.86424| 0.92351| 0.9346| 0.88499 1]
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt 0.59176| 0.92805| 0.89122| 0.91873| 0.86001 1
RAISE_HE_MultiBoost_13 BayesNet_(71.3).txt 0.58064| 0.88852| 0.9393] 0.89272| 0.85394] 0.9647 i
RAISE_HE_MultiBoost_13_Logistic_(73.6).txt 0.57366| 0.91608( 0.88711| 0.92381| 0.85506| 0.99168| 0.96476 1
RAISE_HE_RF_225_5(74.4).txt 0.51227| 0.8369| 0.84597| 0.83356| 0.86787| 0.94761| 0.94116| 0.94973
RAISE_HN_LogitBoost_285_DecisionStump_173_(72.1).txt 0.64441| 0.72731| 0.49641| 0.83599| 0.40326| 0.61425| 0.59571| 0.59909
RAISE_HN_MultiBoost_13_BayesNet (71.3).txt 0.56047| 0.5976| 0.49623| 0.74185| 0.32921| 0.56418| 0.62457| 0.56217
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0.71146| 0.79616| 0.61858| 0.90941| 0.53768| 0.73486| 0.72216| 0.73474
RAISE_HN_RF 225 _5(74.4).txt 0.46582| 0.44728| 0.25346| 0.6208| 0.23317| 0.40888| 0.42044| 0.4044
RAISE_H_LogitBoost 285 DecisionStump_173 (78.1).txt 0.66651| 0.86708| 0.76179| 0.92892| 0.70518| 0.93712| 0.90147| 0.9292
RAISE_H_MultiBoost_13_BayesNet_(84.4).txt 0.45868| 0.72958| 0.65809| 0.81351| 0.5779| 0.88686| 0.9188| 0.88728
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0.46387| 0.74529] 0.63326] 0.83075] 0.57175] 0.91363] 0.87642| 0.92617
RAISE_H_RF 225 _5(91.6).txt 0.26939| 0.59121| 0.52263| 0.67114| 0.48894| 0.8419| 0.83949| 0.84467
RAISE_N_LogitBoost_285_DecisionStump_173 (90.7).txt 0.81429| 0.53372| 0.3686| 0.6161| 0.31015| 0.1134| 0.09208| 0.07247
RAISE_N_MultiBoost_13_BayesNet_(85).txt 0.86955| 0.65997| 0.60013| 0.74023| 0.49537| 0.29878| 0.36689| 0.28454
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.82421| 0.59524| 0.43739| 0.70956| 0.37347| 0.22833| 0.23351| 0.24265
RAISE_N_RF_225_5(86).txt 0.90528| 0.63003| 0.51194| 0.71407| 0.52911| 0.26902| 0.28088| 0.25453

Table F.3: (Page 3 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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AttributeSelected_Bagging_15_RBF_7_56.txt
DTNB_109.txt
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt
EVEN_MultiBoost_13_BayesNet_(61.5).txt
EVEN_MultiBoost_13_Logistic_(63.3).txt
EVEN_RF_225_5(63.0023).txt
IBK_60_w_344.txt
LogitBoost_285_ DecisionStump_173.txt
LogitBoost_285 DecisionStump_344.txt
MAX_Logistic_(65.8767).txt
MAX_MultiBoost_13_BayesNet_(64.3021).txt
MAX_RF_225_5(65.0689).txt
MLP_H62 53.txt
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt
RAISE_EN MultiBoost_13_Logistic_(70.2).txt
RAISE_EN_RF_225_5(70.2).txt
RAISE_E_LogitBoost_285_DecisionStump_173_(78.3).txt
RAISE_E_MultiBoost_13_BayesNet_(84.4).txt
RAISE_E_MultiBoost_13_Logistic_(70.9).txt
RAISE_E_RF_225 5(86.9).txt
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt
RAISE_HE_MultiBoost_13_BayesNet_(71.3).txt
RAISE_HE_MultiBoost_13_Logistic_(73.6).txt
RAISE_HE_RF_225_5(74.4).txt 1
RAISE_HN_LogitBoost_285_DecisionStump_173_(72.1).txt 0.47929 1
RAISE_HN_MultiBoost_13_BayesNet (71.3).txt 0.46875| 0.96526 1
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0.6234| 0.98429| 0.94924 i
RAISE_HN_RF 225 _5(74.4).txt 0.35029| 0.93389| 0.94327| 0.90198 1]
RAISE_H_LogitBoost 285 DecisionStump_173 (78.1).txt 0.85143| 0.90228| 0.85748| 0.94338| 0.7673 1
RAISE_H_MultiBoost_13_BayesNet_(84.4).txt 0.85224| 0.82039| 0.86657| 0.86891| 0.75035| 0.94863 1
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0.84985] 0.8554| 0.84257] 0.90916] 0.76013] 0.9777] 0.96621 1
RAISE_H_RF 225 _5(91.6).txt 0.86986| 0.71802| 0.73966| 0.76479| 0.69448| 0.89164| 0.94347| 0.94848
RAISE_N_LogitBoost_285_DecisionStump_173_(90.7).txt -0.07427| 0.85136| 0.77466] 0.79928| 0.72732| 0.47608] 0.2384] 0.27309
RAISE_N_MultiBoost_13_BayesNet_(85).txt 0.16129| 0.83637| 0.8106| 0.83832| 0.71742| 0.61691| 0.43898| 0.44097
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.06478| 0.89364| 0.83311| 0.86856| 0.78616| 0.59004| 0.37871| 0.41875
RAISE_N_RF_225_5(86).txt 0.18319| 0.82616| 0.78239| 0.8173| 0.74539| 0.58346| 0.3796| 0.40616

Table F.4: (Page 4 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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yesNet_(85).txt
gistic_(88.9).txt

(91.6).txt

(86).txt

gitBoost_285_DecisionStump_173_(90.7).txt

RAISE_N_MultiBoost_13_Lo;

RAISE_H_RF_225_5i
RAISE_N_MultiBoost_13_Ba
RAISE_N_RF_225_5

RAISE_N_Lo:

AttributeSelected_Bagging_15_RBF_7_56.txt
DTNB_109.txt
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt
EVEN_MultiBoost_13_BayesNet_(61.5).txt
EVEN_MultiBoost_13_Logistic_(63.3).txt
EVEN_RF_225_5(63.0023).txt

IBK_60_w_344.txt

LogitBoost_285_ DecisionStump_173.txt

LogitBoost_285 DecisionStump_344.txt
MAX_Logistic_(65.8767).txt
MAX_MultiBoost_13_BayesNet_(64.3021).txt
MAX_RF_225_5(65.0689).txt

MLP_H62 53.txt
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt

RAISE_EN MultiBoost_13_Logistic_(70.2).txt
RAISE_EN_RF_225_5(70.2).txt
RAISE_E_LogitBoost_285_DecisionStump_173_(78.3).txt
RAISE_E_MultiBoost_13_BayesNet_(84.4).txt
RAISE_E_MultiBoost_13_Logistic_(70.9).txt
RAISE_E_RF_225 5(86.9).txt
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt
RAISE_HE_MultiBoost_13_BayesNet_(71.3).txt
RAISE_HE_MultiBoost_13_Logistic_(73.6).txt

RAISE_HE_RF 225 _5(74.4).txt
RAISE_HN_LogitBoost_285_DecisionStump_173_(72.1).txt
RAISE_HN_MultiBoost_13_BayesNet (71.3).txt
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt

RAISE_HN_RF 225 _5(74.4).txt
RAISE_H_LogitBoost_285_DecisionStump_173_(78.1).txt
RAISE_H_MultiBoost_13_BayesNet_(84.4).txt
RAISE_H_MultiBoost_13_Logistic_(86.1).txt

RAISE_H_RF 225 _5(91.6).txt 1
RAISE_N_LogitBoost_285_DecisionStump_173 (90.7).txt -0.00366 1
RAISE_N_MultiBoost_13 BayesNet_(85).txt 0.17271] 0.95965 1
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0.14781| 0.99155| 0.96355 1
RAISE_N_RF_225_5(86).txt 0.18272| 0.95314| 0.95212| 0.95415 i

Table F.5: (Page 5 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Appendix G

(Table G)
Times used
in Times used in [Times used in
ensembles | ensembles of [ensembles of

Classifier of 3 5 %
AttributeSelected_Bagging_15_RBF_7_56.txt 0 39 2866
DTNB_109.txt 1 56 1172
EVEN_LogitBoost_285_DecisionStump_173_(63.3877).txt 0 21 385
EVEN_MultiBoost_13_BayesNet_(61.5).txt 0 99 1209
EVEN_MultiBoost_13_Logistic_(63.3).txt 0 220 2848
EVEN_RF_225_5(63.0023).txt 1 137 2606
IBK_60_w_344.txt 5 e 4691
LogitBoost_285_DecisionStump_173.txt 0 64 1176
LogitBoost_285_DecisionStump_344.txt 1 128 2027
MAX_Logistic_(65.8767).txt 6 149 4068
MAX_MultiBoost_13_BayesNet_(64.3021).txt 1 20 591
MAX_RF_225_5(65.0689).txt 2 49 1989
MLP_H62_53.txt 1 7 1914
RAISE_EN_LogitBoost_285_DecisionStump_173_(70.9).txt 0 12 883
RAISE_EN_MultiBoost_13_BayesNet_(71.3).txt 0 11 295
RAISE_EN_MultiBoost_13_Logistic_(70.2).txt 0 26 646
RAISE_EN_RF_225_5(70.2).txt 0 10 579
RAISE_E_LogitBoost_285_DecisionStump_173_(78.3).txt 0 18 438
RAISE_E_MultiBoost_13_BayesNet_(84.4).txt 0 12 214
RAISE_E_MultiBoost_13_Logistic_(70.9).txt 0 14 667
RAISE_E_RF_225_5(86.9).txt 0 46 279
RAISE_HE_LogitBoost_285_DecisionStump_173_(73).txt 0 121 346
RAISE_HE_MultiBoost_13_BayesNet_(71.3).txt 0 0 407
RAISE_HE_MultiBoost_13_Logistic_(73.6).txt 0 0 484
RAISE_HE_RF_225_5(74.4).txt 0 0 1311
RAISE_HN_LogitBoost_285_DecisionStump_173_(72.1).txt 0 0 1432
RAISE_HN_MultiBoost_13_BayesNet_(71.3).txt 0 0 23
RAISE_HN_MultiBoost_13_Logistic_(70.4).txt 0 0 429
RAISE_HN_RF_225_5(74.4).txt 0 0 153
RAISE_H_LogitBoost_285_DecisionStump_173_(78.1).txt 0 0 233
RAISE_H_MultiBoost_13_BayesNet_(84.4).txt 0 0 41
RAISE_H_MultiBoost_13_Logistic_(86.1).txt 0 0 83
RAISE_H_RF_225_5(91.6).txt 0 0 128
RAISE_N_LogitBoost_285_DecisionStump_173_(90.7).txt 0 0 558
RAISE_N_MultiBoost_13_BayesNet_(85).txt 0 0 228
RAISE_N_MultiBoost_13_Logistic_(88.9).txt 0 0 588
RAISE_N_RF_225_5(86).txt 0 0 1045

Table G.1: These are the number of times each classifier was used in ensembles that achieved
at least 66% (@3 accuracy in the second round of majority-vote ensembles.
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