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ABSTRACT

Feature Identification and Reduction for Improved Generalization
Accuracy in Secondary-Structure Prediction Using Temporal

Context Inputs in Machine-Learning Models

Matthew Benjamin Seeley
Department of Computer Science, BYU

Master of Science

A protein’s properties are influenced by both its amino-acid sequence and its three-
dimensional conformation. Ascertaining a protein’s sequence is relatively easy using modern
techniques, but determining its conformation requires much more expensive and time-
consuming techniques. Consequently, it would be useful to identify a method that can
accurately predict a protein’s secondary-structure conformation using only the protein’s
sequence data. This problem is not trivial, however, because identical amino-acid subsequences
in different contexts sometimes have disparate secondary structures, while highly dissimilar
amino-acid subsequences sometimes have identical secondary structures. We propose (1) to
develop a set of metrics that facilitates better comparisons between dissimilar subsequences
and (2) to design a custom set of inputs for machine-learning models that can harness
contextual dependence information between the secondary structures of successive amino
acids in order to achieve better secondary-structure prediction accuracy.

Keywords: Bioinformatics, machine learning, secondary-structure prediction, amino-acid
properties
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Chapter 1

Introduction

1.1 Initial Motivation and Objectives

Accurate protein secondary-structure prediction from amino-acid sequence data has been

called the holy grail of structural bioinformatics [1]. This is due, in part, to the fact that

sequence data can be extracted using relatively fast and inexpensive laboratory techniques

such as Edman sequencing, while protein structural data typically has to be extracted

using much more expensive techniques such as x-ray crystallography and nuclear magnetic

resonance (NMR) spectroscopy. To illustrate the price difference, consider that the average

cost of determining a novel protein’s three-dimensional structure was about $138,000 (though

the best lab averaged $67,000 per protein) in 2006 [2]. A protein sequence, by contrast,

can now be determined for just over $100 [3]. A reliable method for predicting secondary

structure from sequence data could, therefore, help researchers model a sequenced protein’s

three-dimensional structure quickly and inexpensively.

Many of the most effective modern algorithms for secondary-structure prediction use

information from multiple-sequence alignments of homologous proteins with known structures.

This is undoubtedly a sound approach for predicting structures of sequences that have many

known homologues; good accuracy could probably be achieved by simply predicting that the

test sequence’s structural label at any given position in the sequence matches the consensus

label at the corresponding position in the multiple-sequence alignment. However, ”a significant

number of proteins identified in genome sequencing projects have no detectable sequence

similarity to any known protein” [4]. For these proteins with few or no known homologues,

1
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it would be prudent to use a different approach—one that still leverages domain-specific

knowledge in the context of a machine-learning model.

Ideally, predicting the secondary structure of a protein at a given amino-acid position

would be as simple as identifying unique, short subsequences whose central amino acids

always have one specific label. This approach’s effectiveness is limited, though, for two

reasons: first, the number of possible permutations of 22 amino acids (with replacement) for a

subsequence is exponentially large. There would, for example, be 2213 possible subsequences

that are 13 amino acids long (i.e., of length 13aa) . Even with all the data in the Research

Collaboratory for Structural Bioinformatics protein data bank (RCSB PDB) [5], the number

of subsequences of length 13aa with known labels is a very small fraction of the number

of subsequences that is possible. More important, though, is the fact that the RCSB data

demonstrates that many identical subsequences of length 13aa have different labels when

they appear in different proteins or in different contexts. One study has even demonstrated

that a specific sequence of eleven amino acids folds into an alpha helix when inserted into

one position of a protein, but folds into a beta sheet when inserted into a different position

in the same protein [6]. Thus, even if the search space of every possible subsequence were

tractable, some subsequences could only be assigned tentative majority labels; this would

limit the maximum theoretical accuracy of a predictive model.

In order for a machine-learning model to generalize well to test instances that have

little sequence identity with training instances, it must use some intelligent metric that

can tell when dissimilar subsequences have amino acids with similar properties at identical

positions. It must also be able to identify similar periodic patterns in those properties so

that instances that are nearly identical, but whose attribute values are all shifted by a single

position (like two successive sliding windows) can still be recognized as similar to one another.

Furthermore, the model should have some means for incorporating contextual information

about the predicted structures of preceding and succeeding amino acids in the protein. This

2
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should enable the model to resolve the ambiguity that occurs when identical subsequences

exhibit different structures.

For this thesis, the first aim was to investigate and refine a set of metrics that can

measure the similarity between amino-acid subsequences based on quantitative properties

rather than on sequence identity alone and to use these metrics to develop a custom set of

input features for machine-learning models in order to improve protein secondary-structure

prediction accuracy. The second aim was to develop a customized set of forward- and

backward-context attributes to leverage context information in order to predict when identical

subsequences will have different structures. Since the ultimate intention was for these context

attributes to comprise the predicted output classes of an instant subsequence’s immediate

neighbors in a sliding-window scheme, using an iterative relaxation process in order to

maximize prediction accuracy was included in this second aim.

1.2 Motivation for Investigating Features Based on Amino-Acid Properties

Measuring how similar two amino acids are to one another is deceptively difficult because

there are hundreds of known properties [7] that can be compared; some may be similar to

each other with regard to one property, but dissimilar to each other with regard to another

property. While it is likely that many of these properties would not yield useful information

for secondary structure prediction, it is difficult to define each property’s relevance a priori.

Consequently, we planned to evaluate the relevance of each of these properties individually, if

possible.

In addition to a metric that measures similarity between amino acids situated at

identical positions, there should also be some metric that captures similarity between sequences.

This would be useful because the test instances and training instances used by many secondary-

structure prediction approaches consist of sliding windows applied across the linear sequence

of amino acids that makes up a given protein’s primary structure. In these approaches, each

input feature of a given instance is the single-letter representing an amino acid at a given

3
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Figure 1.1: These are Wenxiang diagrams of a true alpha helix (left) and a region without
secondary structure mapped as though it was an alpha helix (right). Hydrophobic residues
are colored red.

position in the sliding window. To illustrate how this could be problematic, consider a sliding

window of size k applied to a protein of total length n. Each instance would have k input

features, so there would be a total of n-k+1 instances derived from the protein. Any two

consecutive instances would be very similar because they would share a subsequence of length

k -1. The values for the input features, however, would all be shifted over by one. Hence, a

classifier that is only configured to compare input-feature values at identical positions would

have no way of knowing that the two consecutive instances should actually be considered

very similar.

Hydrophobic moment is an example of such a metric [8]. It is generally known that

the interaction of amino-acid residues with water strongly influences the native structure of

proteins [9].

Amphiphilic helices are often situated in proteins such that one side of the helix

interacts with the hydrophobic interior of the protein and the other side interacts with the

hydrophilic surrounding solution. As a result, hydrophobic and hydrophilic residues are

generally distributed in a non-random pattern that isolates them on opposite sides of the

4
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helix. The angle at which one residue is radially pointed outward from the center of an alpha

helix is approximately 100 degrees greater than the angle of the previous residue in the helix.

This principle is best illustrated with a Wenxiang diagram [9], a ”conical projection of an

α-helix onto a plane perpendicular to its axis” as shown in figure 1.1 [10].

Some researchers have quantified this property by using the hydrophobic moment

[9]. To calculate the hydrophobic moment, a descriptive vector is created for each amino

acid. The direction of the vector points outward from the center of the helical axis toward

the residue, while the magnitude of the vector equals the hydrophobic magnitude of the

residue (which is, of course, negative for hydrophilic residues). The hydrophobic moment of

a sequence of amino acids is calculated by adding all the individual residue vectors. It has

been shown to be a helpful metric for secondary-structure prediction [8].

In order to glean more information from the hydrophobicity patterns, though, a slightly

modified approach was also used for this project. The cumulative moments of the hydrophilic

and hydrophobic residues can be calculated separately and the angle between them can be

determined. The inter-moment angle is a metric we invented independently and have not

seen used in any of the literature, but it looked promising because data gleaned from ss.txt

demonstrates that the distributions of inter-moment angles for alpha-helical regions and

unstructured regions appear to be very distinguishable; that data is shown in the histograms

found in figures 1.2 and 1.3.

1.3 Motivation for Investigating Contextual Features Comprising Predicted

Output Classes of Neighboring Residues

When aiming to identify the secondary-structure label of any single amino acid in a sequence,

it is important to remember that there is a high degree of dependence between its label

and the labels of the amino acids immediately next to it. An amino acid that is part of an

alpha helix, for example, is always next to at least one other amino acid that also has the

same label because at least four consecutive amino acids are needed to form an alpha helix
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Figure 1.2: Distribution of Hydrophobic Inter-Moment Angles Found in α-Helices of Length
13aa in ss.txt

Figure 1.3: Distribution of Hydrophobic Inter-Moment Angles Found in Non-Structured
Sequences of Length 13aa in ss.txt

6
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Figure 1.4: Distribution of Lengths of All Contiguous α-Helix Sequences Found in ss.txt
(measured in amino acids)

structure [11]. The principle is also relevant to other types of secondary structures, since

they are all formed as a result of bonding between the backbones of at least two amino acids.

The data found in ss.txt, a file containing the known secondary structure labels for all RCSB

Protein Data Bank files, is consistent with this principle. As an example, the distribution of

lengths of all contiguous alpha helix structures found in ss.txt is shown in figure 1.4.

Given this high degree of dependence between the labels of successive amino acids,

the best machine-learning models for secondary-structure prediction should incorporate some

means for capturing the dependence information that is found in a given training set. Complex

dependencies that cannot be captured by simply looking back one step clearly exist in this

project’s data set. For example, if the label N signifies no secondary structure and the label H

signifies an alpha-helix structure, four amino acids with the labels NHHH must be followed by

an amino acid with label H, but one amino acid with the label H may or may not be followed

by an amino acid with the label H. As a result, it would be preferable to use predicted labels

from at least four preceding instances as temporal backward-context attributes for a current

instance.

7
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1.4 A Note on Project Scope

DSSP is a database of secondary structure assignments for all entries in the RCSB Protein

Data Bank [12]. DSSP also refers to the program that extrapolates secondary-structure

assignment based on the three-dimensional coordinates available to a given protein in the

RCSB Protein Data Bank [13]. Kabsch and Sander’s Dictionary of Secondary Structures of

Proteins (the unabbreviated form of the acronym DSSP) defines eight possible secondary-

structure labels: α-helix (H), residue in isolated beta bridge (B), extended beta strand

(β-sheet) (E), 310 helix (G), π-helix (I), hydrogen-bonded turn (T), bend (S), and none ( ).

For the purposes of evaluating programs that predict secondary structure, however, Rost and

Sander outlined the following convention: the three different types of helices are grouped

together into once class (H), the extended beta strand remains a stand-alone class, and the

remaining structures (including ”none”) are grouped together into the loop class (L, though

we will call it N) [14]. Qian and Sejnowski also provided a concise explanation of a common

metric used for measuring model performance on secondary-structure prediction:

Q3 =
Pα + Pβ + Pcoil

N
(1.1)

where N is the total number of residues whose structures were predicted and Pα, Pβ, and

Pcoil are the number of residues with each respective type of secondary structure that were

predicted correctly [47].

For this project, we chose to evaluate our final methods using the three-class convention

because some classes from the eight-class definitions are extremely rare [13]. Furthermore,

most published studies on secondary-structure prediction have used this convention, so it will

be easier to compare our results to those of other researchers if we use it.

As we mention at various points throughout this thesis, the current models that achieve

the highest secondary-structure prediction accuracy are those that use information from

multiple-sequence alignments. Aydin [4] refers to models that do not use information from

8
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homologous proteins as single-sequence algorithms. Note that the single-sequence concept is

more stringent than the sequence-unique concept (as used in CASP). The latter only requires

that there be no significant similarities between proteins in the test set and proteins in the

training set [4]. Unlike the single-sequence condition, however, it still allows sequence profile

information to be used; this improves prediction accuracy by several percentage points [4].

The best current single-sequence approach, though, achieves a prediction accuracy below 70%

[15].

We chose to focus on a single-sequence algorithm for several reasons: (1) multiple-

sequence alignments are computationally expensive; (2) the accuracy of any algorithm applied

in conjunction with a multiple-sequence alignment might be more dependent on the degree

of homology between the aligned sequences and the test sequences than on the merits of

the algorithm itself; (3) there are many proteins with no known homologues [4]; and (4) our

method can be used in conjunction with methods that use multiple-sequence alignments in

the future if we so desire.

1.5 Summary of Introduction and Thesis Statement

There is demonstrable evidence that information that can be gleaned from amino-acid

properties and from predicted labels of neighboring amino-acids may help identify patterns

that may ultimately prove useful for improving protein secondary-structure prediction,

particularly for proteins that lack known homologues. In this project, a set of input features

based on amino-acid properties is developed and shown to aid several machine-learning

classifiers in achieving better Q3 secondary-structure prediction accuracy under conditions

where close homologues are not used in the training set. In addition, a set of inputs that

harnesses contextual dependence information between the secondary structures of successive

amino acids is also shown to aid a few machine-learning classifiers in achieving better Q3

secondary-structure prediction accuracy in some limited circumstances.
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Chapter 2

Related Work

Researchers have been focused on identifying and predicting protein secondary struc-

ture for over five decades. The following sections provide some concise chronological summaries

of the development of the theory and the approaches that researchers have used for secondary-

structure prediction. The focus of the last two subsections narrows in to describe approaches

that have used some form of information derived from amino-acid properties and approaches

that have used predicted labels of neighboring amino acids to provide context information.

Since this project focuses on secondary-structure prediction for proteins that lack known

homologues, the approaches that do not require homology information will ultimately provide

the best apples-to-apples benchmark to which our approach can be compared.

2.1 Brief Explanation of the History of Secondary-Structure Prediction

2.1.1 The First Decade

In 1951, researchers first described the patterns we call secondary structure in proteins [16, 17].

A few years later (1954), researchers identified proline as an amino acid that strongly affected

secondary-structure patterns [18, 19]. In that same decade (1958), x-ray analysis of proteins

progressed to the point where it was finally possible to generate complete three-dimensional

models of proteins [20].
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2.1.2 The Hypothesis of Absolute Determinism

In 1964, Straub published a thorough article describing the ”widely accepted hypothesis” that

secondary and tertiary structure could be determined entirely based on sequence data [21].

The theory seemed attractive enough, especially given that some previous and subsequent

studies demonstrated that many unfolded proteins can refold into their original conformations

when placed in the proper environments [22, 23]. However, Straub wisely noted that some

observations were ”not in harmony with the theory of absolute determinism,” thereby showing

awareness of the problem’s greater complexity [21].

Early methods for secondary-structure prediction continued to develop; in general, they

were simple rule-based models based on statistical correlations between the presence of certain

amino acids and helices. In 1965, Guzzo suggested that certain amino acids—specifically

proline, aspartic acid, glutamic acid, and histidine—were needed for an alpha helix to form

[24]. The following year, Prothero extended Guzzo’s work by proposing that any region of five

amino-acid residues would be helical if at least three of the five were Ala, Val, Leu, or Glu

and that any region of seven amino-acid residues would be helical if at least three residues

were Ala, Val, Leu, or Glu and at least one was Ilu, Thr, or Gln [25]. Periti [26] and Ptitsyn

[27] also used statistical analyses to generate simple predictive models. In addition, Schiffer

(1967) observed that helical-wheel representations of α-helices in proteins like myoglobin and

hemoglobin demonstrated distinctive hydrophobic arcs that could help distinguish helical

regions from non-helical ones; this was perhaps one of the earliest examples of how a periodic

pattern of an amino-acid property could aid in secondary-structure prediction [28].

2.1.3 Free Energy, Levinthal’s Paradox, and Anfinsen’s Dogma

By 1969, some had theorized that a protein would simply fold into the conformation cor-

responding to its globally lowest free energy; Cyrus Levinthal, however, presented the

now-famous ”Levinthal’s paradox” in which he argued that a protein could not randomly

move through all of its possible conformations quickly enough to find its global minimum in
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time to explain the experimental refolding speeds of some proteins [29]. Several years later

(1973), Anfinsen presented a postulate that is now known as ”Anfinsen’s Dogma”: given a

specific set of environmental conditions, a small globular protein’s native conformation will

be a unique, stable, and kinetically accessible structure—though it may only represent a local

minimum relative to free energy [30]. Simon also published useful research detailing some

structural features that contribute to refolding ability [23]. (As a side note, it is now known

that there are exceptions to Anfinsen’s dogma, such as intrinsically disordered proteins [31]).

2.1.4 Early Statistical Models

In the meantime, models for secondary-structure prediction continued to develop. In 1971,

Robson and Pain used an information-theory approach to harness some known statistical

information about single residues and pairwise residue combinations into a simple predictive

model [32]. That same year, the Protein Data Bank was officially established [33]. Nagano

[34], Garnier [35], and Chou & Fasman [36] all developed methods that harnessed correlations

between amino acids and secondary structure. Lim [37] and Ptitsyn [38] also began considering

the influence of physico-chemical properties on secondary structure. In 1983, Kabsch &

Sander compared the methods of Chou & Fasman, Lim, and Garnier, respectively, and tested

them with newly available data; they ultimately concluded that the best overall three-state

prediction accuracy that these methods could consistently achieve was about 56% [39]. Cohen

[40] developed a model that considered hydrophilicity (the inverse of hydrophobicity) spacing

patterns. Since these models were not designed to use information from multiple-sequence

alignments or other information that is dependent on homology, they can appropriately be

compared to the models developed in this project.
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2.1.5 Early Machine-learning Models and Multiple-sequence Alignment

Information

As early as 1978, it had been suggested that information from multiple-sequence alignments

would improve the results of secondary-structure prediction [35]. A number of different

researchers aimed to harness this information throughout the 1970s and 1980s [41, 42, 43, 44,

45].

In 1988, both Bohr [46] and Qian & Sejnowski [47] applied neural-network approaches

to the secondary-structure prediction problem [47]. The latter selected a set of 106 proteins

with known structures, taking care to limit the number of sequences that were ”almost

identical” because their results were ”highly sensitive to homologies between the testing and

training sets” [47]. Each data instance was derived from a sliding window of 13 amino-acid

residues; the amino-acid identities of the 13 residues comprised the input features, while the

three-class secondary structure label for one of the amino acids in the window comprised

the output class [47]. They also provided a concise explanation of the Q3 metric used for

measuring model performance on secondary-structure prediction (shown in equation 1.1)[47].

Qian and Sejnowski’s method ultimately achieved a Q3 prediction accuracy of 64.3%; they

suggested that a theoretical limit of about 70% could be achieved using local methods [47].

Since Qian and Sejnowski’s did not use homology information and were careful ensure there

was minimal homology between proteins in the training set and the test set, their results

probably provide the best apples-to-apples benchmark for the methods used in this project.

Other researchers quickly followed suit by applying neural networks to secondary-

structure prediction [48, 49, 50, 51, 52]. In 1993, Rost and Sander were able to achieve 70.8%

accuracy by using a neural-network approach that added information from multiple-sequence

alignments; in the process, they compiled the data set of that is now commonly known as

RS126 [14]. However, since Rost and Sander used multiple-sequence alignments (and therefore

homology information), their results would not serve as a good benchmark for the results
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achieved by models that do not use homology information (such as the ones developed in

this project).

2.1.6 The Modern Era

In the past 20 years, researchers have continued to apply neural networks and other machine-

learning methods to the secondary-structure prediction problem. Some additional models

that have been used include support-vector machines [53, 54], recurrent neural networks [55],

decision trees [56], Bayesian networks [57], nearest-neighbor algorithms [58, 59], and hidden

Markov models [60]. In general, the methods that achieve the highest prediction accuracies

use information from multiple-sequence alignments and position-specific scoring matrices

[61]. Others have also shown that a protein’s family classification, which is another type of

homology information, can also be used to increase prediction accuracy [15]. Berezovsky and

Trifonov also presented evidence that that proteins fold into subunits of 25–30 amino acids

in a local way [62]. One recent method that strategically used homology information even

reported achieving prediction accuracy exceeding 90% [63].

There are many different methods available for secondary-structure prediction, but

Pirovano and Heringa suggest that SSpro is ”among the leading secondary structure prediction

algorithms in terms of accuracy” [64]. In addition, they identify Porter as the ”current top

performer” out of all algorithms currently registered on the EVA (Evaluation of Automatic

protein structure prediction) server—a web-based assessment tool for evaluating the accuracy

of secondary-structure prediction methods [64]. They also mention that PSIPRED is relatively

accurate, easy to use, and popular [64]. However, because SSpro, Porter, PSIPRED, and

even Rost and Sander’s model all heavily rely on the use of homology information, they do

not conform to the sequence-unique approach and are therefore not ideal models to which our

sequence-unique model can be compared. As a result, the best models for apples-to-apples

comparison include Qian and Sejnowski’s model and the single-sequence leaders described by

Aydin.
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2.1.7 Use of Amino-Acid Properties in Secondary-Structure Prediction

There are some key amino-acid properties that have been shown to aid in secondary-structure

prediction in the absence of information from homologous proteins. The properties that

are generally recognized as being most relevant include residue conformational propensities

[9, 65, 8], hydrophobic moments [9, 8], sequence edge effects [8], and residue ratios [8].

Grantham polarity scales [66], molecular weight [52], pseudo amino acid composition [54],

and pair-coupled amino acid composition [88] have also been used by different researchers to

aid in secondary-structure prediction.

Amino-acid properties have also been frequently used for classifying proteins into

families. Cai, for example, used properties such as hydrophobicity, normalized van der

Waals volume, polarity, polarizability, charge, surface tension, and solvent accessibility to

classify proteins into families [67]. Others have used different sets of properties to classify

proteins into families [68]. Family classifications, in turn, have been shown to be helpful for

secondary-structure prediction [15].

2.1.8 Use of Predicted Labels of Neighboring Amino Acids for Context in

Secondary-Structure Prediction

A number of researchers have aimed to consider, in one form or another, the predicted labels

of neighboring amino acids as context to aid in secondary-structure prediction. Petersen, for

example, used a sliding window of 17 residues as input to a neural network that predicted

the label of the middle amino acid and its immediate neighbors simultaneously such that

the prediction for the central amino acid at position i was dependent on the predictions for

the amino acids at positions i+ 1 and i− 1 [69]. Lundegaard used a similar sliding-window

approach that also predicted the labels of three consecutive amino acids simultaneously [70].

While both used a balloting process, there was no relaxation step after the balloting.

Nyugen and Rajapakse used two-stage multi-class support vector machines wherein

the outputs of the first-stage SVM were used as inputs for the second-stage SVM in order to
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leverage contextual information—like the fact that beta strands consist of at three consecutive

residues and alpha helices consist of at least four [71]. Once the second-stage SVM reached

its final predictions, though, there was no relaxation step.

Baldi and Pollastri used a bi-directional recurrent neural network wherein outputs

from hidden layers on preceding and succeeding sliding windows serve as inputs to the output

layer of an instant sliding window [72, 73]. Their approach also uses information from multiple

sequence alignments and has ultimately been implemented in two of the most successful

secondary-structure-prediction programs to date: SSPro and Porter [73].

Asai used a hidden Markov model that iteratively re-estimated parameters (e.g.,

transition probabilities) [60]; this might be considered a form of relaxation.

2.2 Brief Summary of the Approaches used in this Project that have not been

used Previously

While a small number amino-acid properties have been applied in one way or another to

secondary-structure prediction, our experiments in this project test the usefulness of over

500 different amino-acid properties in single-sequence secondary-structure prediction. In

order to test these properties, we use some known attributes, such as the total hydrophobic

moment and the letters for individual amino acids in a sliding window. We also devise

several novel attributes that can be derived using a given amino-acid property, such as the

inter-moment angle and a series of attributes that represents property moments across several

sub-windows of the sliding window in order to capture information about how the moment is

changing within the instance represented by the sliding window. We also demonstrate that

helpful diversity can be created for a classifier set used to generate majority-vote ensembles

with improved overall prediction accuracy for secondary-structure prediction by using three

different approaches to create classifiers: (1) creating different types of classifiers on the

using the same attributes sets, (2) creating classifiers using different attribute sets derived
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from amino-acid different properties, and (3) creating cost-sensitive versions of classifiers (an

approach that has not been used in in this way).

In addition, we also test the usefulness of attributes that represent both true and

predicted output classes of neighboring instances. We also apply a multiple-round relaxation

process in using the predicted output classes in order to test whether relaxation can be used

to increase prediction accuracy.
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Chapter 3

Preliminary Experimental Result

3.1 Design for the Proof-of-Concept Experiment

While we have provided some theoretical justifications for the proposal in the previous

sections, we also saw the need to run a preliminary experiment for proof-of-concept purposes.

This section describes this experiment.

Venkatarajan used multidimensional scaling to condense the information from 237

amino-acid properties into five quantitative descriptors [7]. It seemed prudent to use these

descriptors for the preliminary proof-of-concept experiment, since they contained a great

deal of information that we hoped might help a machine-learning model quantify amino-acid

similarity.

In the first step of our proof-of-concept experiment, the protein-data-bank (PDB) file

for ferritin from the pseudo-nitzschia series was chosen as the data set because ferritin is a

large protein with intricate secondary-structure patterns. The PDB file was converted to an

arff file using a Perl script; the resulting data set had thirteen attribute columns and one

classification column. For every given instance, each of the attribute columns could have

any single-letter value found in the set {A,R,D,N,C,E,O,G,H,I,L,K,M,F,P,Q,S,T,W,Y,V,X},

where each letter represented its corresponding amino acid (or, in the case of X, an unknown

amino acid; X values are occasionally found in PDB files). The classification column of each

instance could have any single-letter value found in the set {H,B,E,G,I,T,S,N}, where H =

helix, B = residue in isolated beta bridge, E = extended beta strand, G = 310 helix, I =

π-helix, T = hydrogen-bonded turn, S = bend, and N = nothing. The classification column
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Table 3.1: Prediction Accuracies of Several Algorithms on 3E6R Data (Ten-Fold Cross
Validation)

represented the secondary-structure classification of the middle amino acid (i.e., the seventh)

in the instance. The instances represented all successive subsequences of length 13aa (i.e., a

sliding window of size 13 was used). This arff file was meant to serve as a control, since it

used no property-based or temporal-context attributes.

Next, the first arff file was converted to a new arff file that replaced the original

13 amino-acid letter attributes with a set of amino-acid property attributes. This was

done by exchanging each amino-acid letter for its five Venkatarajan quantifiers and its

helical propensity (delimited by commas appropriately) for a total of 78 amino-acid property

attributes. The three whole-subsequence hydrophobicity attributes (inter-moment angle,

magnitude of positive moment, and magnitude of negative moment) were then added, followed

by the output classes of the previous four instances as temporal backward-context attributes.

Thus, each instance in the new arff file had a total of 85 attributes in all. This was also done

with a Perl Script. Both arff files were then tested using several different machine-learning

algorithms in Weka. The results are shown in table 3.1.

The sizable increase achieved in prediction accuracy when using the experimental

attribute set suggested that the three-pronged approach of using temporal context attributes,

individual amino-acid similarity attributes, and whole-subsequence similarity attributes was

potentially more effective than the control approach.

While the results for the proof-of-concept experiments were encouraging, we recognized

that there was a need to (1) test these feature sets on larger and commonly used data sets;

(2) evaluate the amino-acid property features and the temporal context features separately;
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(3) evaluate a larger number of properties; (4) use temporal context features that represented

predicted classes of neighboring amino acids generated through a relaxation process rather

than known ones.

3.2 Explanations Regarding Some Available Data Sets

We identified a number of data sets that have been used to benchmark different methods of

secondary-structure prediction. For background purposes, a brief explanation of each follows.

In general, data sets with higher resolution lead to better prediction accuracy [48].

3.2.1 The ”Molecular Biology (Protein Secondary Structure) Data Set” [47]

This data set was originally compiled in 1988 by Ning Qian (Johns-Hopkins University) and

Terry Sejnowski (UC-San Diego). They were the first researchers to use a neural-network

model to approach secondary-structure prediction, though Robson, Garnier, and Chou &

Fasman had all developed and applied different models to the same problem. This data, which

was downloaded from the UCI Machine Learning repository, comprises a training set and a

test set used in their 1988 paper [47]. They obtained a set of solved protein structures from

the Brookhaven National Laboratory [74] (the predecessor to the RCSB protein data bank);

a method developed by Kabsch and Sander had been used to assign three-class secondary

structure (alpha helix, beta sheet, or coil) based on atomic coordinates found in each protein.

Qian and Sejnowski noted that their results were ”highly sensitive to homologies between

proteins in the testing and training sets,” so they divided the 106 proteins into a training set

with 91 proteins and a test set with 15 proteins such that there was ”no homology” between

the training and test sets [47]. They noted—and much of the subsequent research cited above

confirms—that much higher prediction accuracies can be achieved on test sets when models

are trained with homologous data. Using 13 inputs (similar to our experimental setup),

they achieved 64.3% Q3 accuracy and suggested that ”a theoretical limit of 70% [could] be

obtained with local methods.” To date, their paper has been cited over 1,000 times.
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Table 3.2: List of Superseded Protein Structures and their Replacements for Data Set RS126
Superseded ID New ID

3B5C 1CYO
2STV 2BUK
2GCR 1A45
1WSY 1BKS
3GAP 1G6N
2WRP 2OZ9
1FDX 1DUR
2FXB 1IQZ

3.2.2 The RS126 Data Set [14]

Rost and Sander compiled a set of 126 proteins known as the RS126 data set. The set

comprises 126 globular- and 4 membrane-protein chains with less than 25% pairwise identity

for lengths greater than 80aa. Subsequent research suggests, though, that pairwise identity

is a poor method of measuring sequence similarity. They noted that ”the most reliable

prediction of the structure of new proteins is done by detection of significant similarities to

proteins of known structures.” [14 (citing 76)]. Using homology information derived from

multiple-sequence alignments, they achieved an overall Q3 accuracy of 70.8%.

3.2.3 The CB396, CB251, and CB513 Data Sets [61]

In 1999, Cuff and Barton re-iterated that most successful techniques for secondary-structure

prediction rely on aligning test instances with homologues [61]. They emphasized that there

should be ”no detectable sequence similarity” between training and test sets [61]. They

explained that up to four fifths of known homologues may be overlooked if only pairwise

sequence-alignment methods are used to measure homology [61]. They therefore used more

sensitive homology-detection methods to ensure that there was no homology in a set of 554

protein domains with resolutions ≤ 2.5 angstrom that they collected from the 3Dee database

of structural domain definitions. Since they wanted to test some algorithms that had already

been tested on RS126, they removed domains that had homologues in RS126 and domains

that failed to meet some other more stringent requirements. This resulted in CB396. CB513
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Table 3.3: List of Superseded Protein Structures and their Replacements for Data Set CB396
Superseded ID New ID

1AMG 2AMG
1CHB 2CHB
1CTH 2CTH
1CXS 1EU1
1GEP 2GEP
1KIN 1KIM
1TSS 2TSS
2BLT 1XX2
3BCL 4BCL

Table 3.4: List of Superseded Protein Structures and their Replacements for Data Set PSS504
Superseded ID New ID

1R5R 3BJH
1R0T 1Z7K

was made by adding RS126 to CB396 and removing 9 more domains based on more criteria.

CB497 was made by removing the 16 domains in CB513 that are ≤ 30aa in length.

3.2.4 The PSS504 Data Set [66]

In 2006, Gubbi et al. compiled the PSS504 data set using CATH, a hierarchical classification

of protein domain structures published in 1997 by Orengo et al. [66] (The acronym CATH

stands for categories used in the classification system: Class, Architecture, Topology, and

Homologous superfamily [77]). The sequences included in PSS504 all have pairwise sequence

identities (compared to all other respective sequences in the data set) of less than 20%. All

of their respective PDB files have a resolution of at least 2 angstrom and are at least 40aa in

length; has longer sequences and more residues than CB513.

3.2.5 The EVA6 Data Set [78]

EVA was a project started in 2001 for the purpose of benchmarking protein structure

prediction [78]. Limited funding, however, caused the EVA project to be frozen in 2008 [87].

EVA was intended to address not only secondary structure prediction, but also the related
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Table 3.5: List of Superseded Protein Structures and their Replacements for Data Set EVA6
Superseded ID New ID

1KOM 1T23
1NNG 1YLI
1UW2 2VRD
1Z61 1ZAE

problems of comparative modeling, fold recognition/threading, and inter-residue contact

predictions [78]. EVA6 is one of several different EVA sets that were compiled before the

EVA project was frozen. It was generated by gleaning the latest (at the time) experimentally

determined structures from the PDB website. The secondary-structure labels of each amino

acid in each respective structure were determined using the DSSP program (which labels

secondary structures based on the 3D atomic coordinates found in the PDB files). The extent

to which any proteins in the EVA6 data set share homology with each other, though, is not

immediately available (to our knowledge).

3.2.6 The PLP399, PLP364, and PLP273 Data Sets [79]

These relatively recent data sets were generated by Bent Petersen et al. in order to test

their method for predicting beta-turns. They collected sequences from RCSB using the

protein-culling server PISCES. They initially collected 3,572 protein chains with maximum

pairwise sequence identities of ≤ 25%, resolutions of ≤ 2 angstrom, R-factors of ≤ 0.2, and

sequence lengths ranging from 25–10,000aa [79]. They reduced the initial set of protein chains

to 399 (which make up PLP399) by using a Hobohm1 algorithm to ensure that there was

minimal homology between all pairs of sequences [79]. As a note, no sequences in PLP399

have more than 25% sequence identity with any sequences in the BT426 data set [79]. PLP

364 consists of all protein chains in PLP399 that were deposited in RCSB between 2008 and

2010, inclusive [79]. PLP273 consists of all protein chains in PLP399 that were deposited in

RCSB PDB between 2009 and 2010, inclusive [79].
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Table 3.6: List of Superseded Protein Structures and their Replacements for Data Set BT426
Superseded ID New ID

1GDO 1XFF
5ICB 1IG5
1ALO 1VLB
3B5C 1CYO

Table 3.7: List of Superseded Protein Structures and their Replacements for Data Set BT823
Superseded ID New ID

1R5R 3BJH

3.2.7 The BT426 Data Set [80]

This data set was collected by Guruprasad and Rajkumar for the purpose of determining

dependent positional preferences in beta and gamma turns [80]. They selected a set of 426

protein chains that all had at least one beta or gamma turn; there is ≤ 25% pairwise sequence

identity between all chains in the set and chains had a resolution of ≤ 2 angstrom. These

protein chains were collected from the RCSB using the program PDB SELECT.

3.2.8 The BT823 and BT547 Data Sets [81]

Fuchs and Alix compiled the BT547 and BT823 data sets for the purpose of testing their

method of predicting beta turns [81]. They chose chains that had at least one beta turn and

resolution ≤ 2 angstrom. The extent to which the chains have homology with each other is

not listed.

3.2.9 The SPX Data Set [82]

Cheng et al. compiled the SPX data set for the purposes of testing their method of predicting

disulfide bridges [82]. They assembled the set by first pulling all proteins having at least one

Table 3.8: List of Superseded Protein Structures and their Replacements for Data Set BT547
Superseded ID New ID

1GDO 1XFF
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intrachain disulfide bridge that were available in the RCSB PDB on May 17, 2004. They then

used UniqueProt to exclude a number of chains such that there would be minimal homology

in the remaining set. The end result was the set of 1,018 protein chains found in the SPX

data set.

3.2.10 The TT1032 Data Set [69]

Thomas Nordahl Petersen et al. compiled the TT1032 by first pulling a large set of proteins

available in the RCSB PDB as of August 1999.They excluded any chains that were less than

30aa in length and any chains that did not have ≤ 2.5 angstrom resolution. They then used

the Hobohm algorithm to reduce intra-set homology between proteins and inter-set homology

with the RS126 data set. They also manually removed transmembrane proteins. The result

was the TT1032 data set.

3.3 Finding and Evaluating a Larger Set of Amino-Acid Properties

A large database of physicochemical and biochemical properties of amino acids has been

compiled by Kawashima et al. [83]. This database actually has three sections: AAindex1 (in-

dividual amino-acid properties), AAindex2 (substitution matrix information), and AAindex3

(statistical protein contact potentials) [83]. For the purposes of this project, we restricted our

focus to AAindex1—a compilation of 544 amino-acid properties.
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Chapter 4

Primary Experimental Results

4.1 Evaluation of the Relevance of the Amino-Acid Properties

We initially opted to use PLP399 for the feature-selection process. The sequences from

PLP399 with DSSP annotations were gleaned from the ss.txt file. We then wrote a Perl

script to construct an arff file from those sequences. The instances in the arff file consisted of

all successive sliding windows of 13 residues; we chose a sliding-window length of 13 residues

because Hua identified 13 as the optimal sliding-window length [53] and Qian and Sejnowki

also used a window length of 13 in their seminal paper. The letter of each amino acid at each

position 1–13 served as an attribute value, so there were 13 attributes in all. The output

class (i.e., label) for each instance was the three-class secondary structure label (as defined by

Rost and Sander) of the middle residue. We also wanted to predict the structures of residues

that were close to the ends of protein sequences. Since each sliding-window instance’s label

represented the structure of the middle amino acid, there was a need to create a null category

for attributes 1–6 and 8–13 as a space-filler at the edges of each protein. We used an asterisk

to represent this null category. When this scheme was used, the PLP399 set produced an

arff file with 71,098 instances. This file with only letter attributes was meant to serve as our

control.

4.1.1 First Approach to Feature Selection

We downloaded aaindex1.txt (the text file containing the entries for Kawashima’s AAindex1)

and wrote a script to generate an experimental arff file. The experimental file included 13
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letter attributes corresponding to the 13 respective amino acids in each instance. For each

letter attribute, the experimental arff file also added the 544 quantitative properties found

in the aaindex1.txt file as new numeric attributes. Furthermore, for quantitative properties

that had both positive and negative possible values, the magnitude of the alpha-helical

positive moment, the magnitude of the negative alpha-helical moment, and the magnitude

of the inter-moment angle between them for the sliding window were calculated and added

as additional whole-subsequence attributes. This approach resulted in an arff file that had

71,098 instances and 7,597 attributes.

We initially attempted to perform feature selection using several different pairs of

attribute evaluators and search methods in Weka [84]. However, this approach presented

several problems. First, the arff file was so large that many attribute-evaluator/search-method

pairs could not be tested because they exhausted all memory on the java heap—even when the

heap size was increased to 10 gigabytes. Those that did execute successfully had inordinately

long running times and produced results that were difficult to reconcile with each other. One

evaluator, for example, would rank a large number of whole-subsequence attributes (i.e.,

moment magnitudes and inter-moment angles) before any single-position attributes, while

another evaluator would rank over 100 single-position attributes before any whole-subsequence

attributes.

4.1.2 Second Approach to Feature Selection

Since we believed that the unusually large number of attributes in the experimental arff

file might be related to the drastically different results returned by the different attribute

evaluators, we decided to generate a new set of 54 arff files wherein each file only contained

attributes corresponding to ten amino acid properties (the last file only had attributes

corresponding to four properties, since 544 is not evenly divisible by ten). We then ran Weka’s

ClassifierSubsetEval (using BayesNet as the classifier) on each of the 54 files using ten-fold

cross validation. 235 attributes that were selected in at least nine folds of their respective
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ten-property arff files were identified. A new 235-attribute arff file was then created and

subjected to another round of Weka’s ClassifierSubsetEval (again using BayesNet as the

classifier) using ten-fold cross-validation. After this second round, 78 attributes that were

selected by at least nine folds were identified. A new 78-attribute arff file was then created

and subjected to third round using ten-fold cross-validation. At this point, however, all 78

attributes were selected in at least seven folds. Those 78 attributes are shown in table B of

the appendix. For convenience, table 4.1, an abbreviated version of table B that includes

some of the more surprising and/or interesting attributes that were selected, is included here.

4.1.3 Third Approach to Feature Selection

Even though our second approach to feature selection did yield results that appeared more

intelligible than the results from our first approach, there was lingering doubt about whether

we had actually gathered enough information to ascertain the usefulness of the amino-acid

properties considered—mainly because we had only used a single attribute evaluator and the

results from our first approach had shown that different attribute evaluators often appraised

the same attributes (and hence the properties from which those attributes were derived)

very differently. Furthermore, each of the 54 arff files used in our second approach had been

assigned ten properties based only on the order in which the properties appeared in the

aaindex1.txt file. Hence, it was possible that attributes from some properties might have been

overlooked because they happened to be grouped with attributes from properties that were

even more relevant. In addition, a reference we uncovered in our ongoing research pointed out

that using cross-fold validation can introduce sequence similarities between test and training

sets when both sets contain non-identical instances that are nonetheless derived from the

same protein [61] (e.g., when instances that represent successive sliding windows are put

into both the training and test sets). As a result, there was a possibility that we may have

unwittingly introduced a bias into our results by using cross-fold validation.
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Table 4.1: These are 20 of the 78 attributes that were selected when the second approach to
feature selection was used.
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As a result, we decided that it would be necessary to (1) evaluate each property

individually, (2) perform evaluations using several different types of dissimilar models, and

(3) use separate training and test sets rather than cross-fold validation. We ultimately chose

to use CB396 as a training set and RS126 as a test set because there is minimal homology

between them and because RS126 provides a test set that is relatively large and commonly

known.

Hence, we decided to make 544 individual arff files—one for each amino-acid property—

and to test each property individually. We used the respective attributes for each property

that had been used in stage 2, but we also added several more attributes for the following

reasons. In the preceding experiments, we had only added attributes that represented what

the moments for each instance would be if the instance was helical. We therefore decided to

add an attribute to represent what the total moment of a property would be if the instance’s

sequence was an extended beta strand. We also added an attribute to represent the total

alpha-helical and beta-sheet moments of the entire subsequence that made up each instance.

In addition, we added six attributes that represented the alpha-helical moments and

six attributes that represented the beta-sheet moments over all six subwindows of size 8

that could be extracted from the each instance’s larger sequence of 13. In this manner, we

hoped to elucidate how each moment was changing over the course of the instance. Two

instances might have identical total moments, for example, but one’s moment may show a

trend of increasing over the course of the instance, while the other might show a trend of

decreasing. The former might mean that a helix is starting, while the latter might mean that

a helix is ending. At the edges of an alpha-helical or beta-sheet sequence, we believed that

the difference could be informative. Like the inter-moment angles, these six attributes are

novel contributions that have not been used in any of the literature (to our knowledge).

Ultimately, each of the 544 arff files had the 44 attributes shown in Table 4.2. We then

used Weka [84] to generate several different machine-learning models on each arff file. We tried

to select a variety of different models, such as a neural-network model (MultiLayerPerceptron),
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a regression model (Logistic), a decision-tree model (J48 and DecisionStump), a nearest-

neighbor model (IBK and IB1), a Bayesian model (BayesNet), a rule-based model (DTNB),

and a homogenous boosting/ensemble model (RandomForest). As a side note, the size of the

input files made it impractical to use some models. A support-vector machine model, for

example, took approximately ten hours to finish running on a single property’s arff file. Since

the SVM model generated did not achieve a high Q3 accuracy and it would have taken months

to create an SVM model for each property using the resources we had at our immediate

disposal, we decided not to generate any additional SVM models.

Even though we wrote a script to automate most of the process of generating these

models, it took several weeks to generate them all. The overall Q3 prediction accuracies that

each model type achieved using the arff files generated with each property are shown in table

C of the appendix. Conditional formatting has been applied in table C to each column so

that values that are higher relative to other values in each respective column appear more

red. For convenience, some of the properties that improved Q3 prediction accuracy are shown

below in table 4.3.

4.1.4 Conclusions Regarding the Use of Amino-Acid Properties for Secondary-

Structure Prediction

Not all models types achieved the same gains in Q3 accuracy when using the same property

arff files. This was to be expected. Nevertheless, with the help of the conditional formatting

feature in Excel, trends were clearly visible. The models that achieved the highest Q3

accuracies, such as Logistic and RandomForest, tended to benefit when using the same

property files; a good property file generally improved a good model’s accuracy by 2–3% over

the control file. That being said, not all of the algorithms tested benefitted from the addition

of the new property-based attributes. The RBFNetwork approach, for example, performed

best when using letter attributes only. The NaiveBayes approach also did better with letter

attributes than it did with 536 of the 544 property files.
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Table 4.2: These are the 44 attributes that were used in each individual-property arff file.
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Table 4.3: These are Q3 accuracies achieved by various machine-learning models using the
arff files generated using the attributes shown in table 4.2 on selected properties.
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Most of the properties that yielded notable gains for the best models were related to

hydrophobicity, hydrophilicity, hydropathy, polarity, buriability, partition energy, average

number of surrounding residues (e.g., contact number), and structural propensity. These

results are, at the very least, very consistent with the wealth of previous research that

identifies hydrophobicity as a property that is useful for secondary-structure prediction. To

our knowledge, however, a few of these properties, such as buriability and partition energy,

have not been specifically used before to enhance secondary structure prediction. However,

the extent to which synergistic benefit might result from using buriability and partition energy

alongside some of the properties that are already known to improve secondary-structure

prediction is unclear because buriability and partition energy are correlated to some extent

with some of those known properties (e.g., hydrophobicity).

Thus, for the purpose of secondary-structure prediction, it appears that some properties

definitely do matter, while others probably do not. It also appears that the feature set we

developed, which included some novel features like the inter-moment angle and the moments

over subwindows, succeeded to some extent in facilitating better comparisons between

instances with dissimilar sequences.

4.2 Using Majority-Vote Ensembles to Raise Prediction Accuracy

At this point in our research, we decided to investigate whether heterogenous ensemble

models could be used to achieve a better overall Q3 accuracy. Ensemble models that combine

classifiers can often improve prediction performance [85]. Researchers in machine learning

generally agree that ”[d]iversity is a crucial condition for obtaining accurate ensembles” [85].

Some researchers have successfully created diversity in the component classifiers of ensembles

by training each classifier on a different feature set [85]. In light of these considerations, we

recognized that we had a unique opportunity to experiment with ensemble creation because

the process of evaluating each property individually with several different machine-learning
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algorithms had produced several thousand models that were trained with different feature

sets using different types of classifiers.

4.2.1 First round of Majority-Vote Ensembles

We wrote a Perl program that determines the prediction accuracies (Q3, Pα, Pβ, Pcoil) of all

majority-vote ensembles of an arbitrary number r of classifiers. These classifiers are selected

from a total repository of n classifiers whose Weka [84] output buffers (including predictions

for each instance) are stored in a given directory. Hence, the total number of non-redundant

majority-vote ensembles of size r taken from a set of n classifiers is

(
n

r

)
(4.1)

Given that the number of ensembles therefore increases exponentially, we decided that it

would be best to define a relatively small subset of the models generated for inclusion in our

ensemble experiments.

4.2.1.1 Selecting a Set of Classifiers

Since raising Q3 accuracy was our primary goal, we decided to add 23 of the most successful

(i.e., having relatively high Q3 accuracy) Logistic models to our set of classifiers. In addition,

we added 6 of the most successful RandomForest models, 6 of the most successful BayesNet

models, 2 of the most successful IBK models, and 1 successful DTNB model. Through some

parameter modification and/or use of meta techniques available in Weka [84] (e.g., boosting,

bagging, MultiClassClassifier, and CostSensistiveClassifier), we also teased out a number of

other models with high Q3 accuracies that were added to the classifier set.

In considering which models to include in our set of classifiers, we took note of the fact

that there was a consistent imbalance between Pα, Pβ, and Pcoil regardless of the property

considered and regardless of the model type used. Pβ, in particular, was consistently about
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10–20% lower than Pα and Pα was consistently about 10% lower than Pcoil. Hence, in order

to address the imbalance issue, we also included several cost-sensitive versions of the best

models included in the set of classifiers. Each cost-sensitive model was designed to elevate

exactly one of Pα, Pβ, or Pcoil at the expense of the other two.

4.2.1.2 Summary of Approaches used to Create and Verify Diversity

Summarily, then, there were three approaches we wanted to use to create diversity: (1) using

different types of models, (2) using models that were trained using different properties, and

(3) using models that were trained using cost-sensitivity. Ultimately, the classifier set included

66 models.

Before proceeding, we wanted to apply some method to verify that the three approaches

we had used to create diversity had been effectual to at least some degree. Yule’s Q statistic

for two classifiers, Di and Dk, is defined as

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
(4.2)

where N11 is the number of instances correctly classified by both Di and Dk, N
00 is the

number of instances incorrectly classified by both Di and Dk, N
10 is the number of instances

correctly classified by Di and incorrectly classified by Dk, and N01 is the number of instances

correctly classified by Dk and incorrectly classified by Di [86]. The expected value of Qi,k is

zero for classifiers that are uncorrelated (i.e., independent) [86]. Qi,k can vary between -1

and 1; classifiers that generally classify the same objects correctly will have positive values of

Qi,k, while classifiers that generally commit errors on different objects tend to have negative

values of Qi,k [86].

To visualize the pattern of diversity in the classifier set, we calculated Yule’s Q statistic

for all combinations of two classifiers selected from the 66 models in the classifier set. After

inspecting the results, as shown in Table D of the appendix, we were satisfied that all three
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approaches for creating diversity had been effectual to some degree. For convenience, an

exemplary portion of table D is shown in table 4.4.

4.2.1.3 Results for First Round of Majority-Vote Ensembles

We then used our Perl program to determine the prediction accuracies of all majority-vote

ensembles consisting of combinations of 3, 5, and 7 classifiers selected from the classifier set.

Since the best individual models included in the classifier set achieved Q3 accuracies of up to

65%, we configured the program to identify any ensembles that achieved a threshold value of

66% Q3 accuracy.

There were 4 ensembles of 3 classifiers (i.e., 0.00874% of the total number of ensembles

of 3) that achieved 66% Q3 accuracy. There were 254 ensembles of 5 (i.e., 0.00284% of the

total number of ensembles of 5) and 5,673 ensembles of 7 (i.e., 0.000728% of the total number

of ensembles of 7) that achieved 66% Q3 accuracy. Hence, the number of ensembles achieving

greater than 66% Q3 accuracy does increase as the ensemble size increases, but at a rate that

is smaller than the exponential rate at which the search space of possible ensembles increases.

Table 4.5 shows the number of times each classifier was used in ensembles that achieved

66% Q3 accuracy.

We observed an interesting phenomenon in ensembles of size 7: a large number of the

ensembles of size 7 that achieved the threshold accuracy used one or more of the cost-sensitive

models. Furthermore, a number of models that had been used a moderate number of times in

ensembles of size 5 were not used at all in ensembles of size 7 that achieved 66% Q3 accuracy.

Intrigued, we decided to further explore the influence and relevance of cost-sensitive models

on majority-vote ensembles by performing a second round of ensemble creation as explained

below.
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Table 4.4: These are exemplary pairwise Yule’s Q statistics for combinations of two classifiers
selected from the 66 models in the classifier set for the first round of majority-vote ensembles.
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Table 4.5: These are the number of times each classifier was used in ensembles that achieved
at least 66% Q3 accuracy in the first round of majority-vote ensembles.
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4.2.2 Second Round of Majority-Vote Ensembles

After seeing the results of the first round of ensemble generation, we wanted to investigate

whether including additional cost-sensitive models in the set of classifiers could help create

additional diversity that would lead to more majority-vote ensembles with higher Q3 accuracy.

Machine-learning literature suggests that helpful diversity can be created by varying model

types, feature sets, and general input parameters (see [85]). In addition, it stands to reason

that ensembles of cost-sensitive models can be expected to improve recognition of a minority

class in imbalanced data sets. However, we have not yet come across any literature that

suggests that including cost-sensitive models and non-cost-sensitive models together in set of

classifiers can lead to ensembles that have greater overall prediction accuracy. Hence, we felt

it was worth doing a second round of ensemble creation with a modified classifier set that

included more cost-sensitive model variations in order to explore this possibility.

4.2.2.1 Selecting a Set of Classifiers Including More Cost-sensitive Models

First, we selected four base models that had achieved relatively high Q3 accuracies: Ran-

domForest, BayesNet (paired with MultiBoost), DecisionStump (paired with LogitBoost),

and Logistic (paired with MultiBoost). We added the best versions of these models (e.g.,

those achieving highest Q3 accuracies) to the classifier set. In addition, we derived seven

cost-sensitive models from each base model: three models in which a single class’s prediction

accuracy was elevated (i.e., a model with elevated Pα, a model with elevated Pβ, and a model

with elevated Pcoil), three models in which two of the three classes’ prediction accuracies were

elevated (i.e., a model with elevated Pα and Pβ, a model with elevated Pα and Pcoil, and a

model with elevated Pβ and Pcoil), and a model in which Pα, Pβ, and Pcoil were constrained

to all be within 2% of each other. In the models that had a single elevated class, we tuned

the cost-sensitivity parameters so that the prediction accuracies for two non-elevated classes

were within 2% of each other. In the models that had two elevated classes, we tuned the

cost-sensitivity parameters so that the prediction accuracies for the two elevated classes were
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within 2% of each other. These cost sensitive models were also added to the classifier set.

Finally, we added an RBFNetwork model, a MultilayerPerceptron Model, an IBK (nearest

neighbor) model, a DTNB (rule-based) model, and an additional boosted DecisionStump

model to the classifier set. Thus, the classifier set included the 37 models in total. The Yule’s

Q statistics for all pairs of classifiers in this second round’s classifier set are shown in table F

of the appendix. For convenience, an exemplary portion of table F is shown in table 4.6.

4.2.2.2 Results for Second Round of Majority-Vote Ensembles

We then used our Perl program to determine the prediction accuracies of all majority-vote

ensembles consisting of combinations of 3, 5, and 7 classifiers selected from the new classifier

set. We again configured the program to identify any ensembles that achieved a threshold

value of 66% Q3 accuracy. As was the case with the first round, the number of ensembles

achieving greater than 66% Q3 accuracy increased as the ensemble size increased, but at

a rate that was smaller than the exponential rate at which the search space of possible

ensembles increased.

There were 6 ensembles of 3 classifiers (i.e., 0.0773% of the total number of ensembles

of 3) that achieved 66% Q3 accuracy. There were 300 ensembles of 5 (i.e., 0.0688% of the

total number of ensembles of 5) and 5,576 ensembles of 7 (i.e., 0.0542% of the total number

of ensembles of 7) that achieved 66% Q3 accuracy. Table 4.7 shows the number of times each

model type was used in ensembles that achieved 66% Q3 accuracy.

Again, cost-sensitive models were used much more frequently in ensembles of size 7

than in ensembles of 5 or 3. In ensembles of 5, however, at least one cost-sensitive model in

which Pα, Pβ, and Pcoil were constrained to all be within 2% of each other (i.e., an ”EVEN”

model) was used in 279 of the 300 ensembles that achieved 66% Q3 accuracy. In ensembles

of 7, at least one cost-sensitive EVEN model was used in 4,549 of the 5,576 ensembles that

achieved 66% Q3 accuracy, while at least one cost-sensitive MAX model was used in 4,827 of

the 5,576 ensembles.
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Table 4.6: These are exemplary Yule’s Q statistics for combinations of two classifiers selected
from the 37 models in the classifier set for the second round of majority-vote ensembles.
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Table 4.7: These are the number of times each classifier was used in ensembles that achieved
at least 66% Q3 accuracy in the second round of majority-Vote ensembles.
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4.2.3 Conclusions and Possible Directions for Future Research Regarding Majority-

Vote Ensembles that have Diversity Generated from the Three Approaches

Our two rounds of experiments with majority-vote ensembles answered some questions, but

also engendered many new questions and directions for future research that could be pursued

(though they would be beyond the scope of this project). We discuss these issues in turn.

First, both rounds of ensemble experiments seem to suggest that diversity that is

helpful for increasing the overall prediction accuracy of majority-vote ensembles can indeed

be created by using cost-sensitive versions of one or more classifiers. Cost-sensitive classifiers

that are tuned to predict all output classes with similar accuracy seem to be particularly

useful, at least in ensembles of the sizes considered in our experiments. In majority-vote

ensembles using at least 7 classifiers, cost-sensitive classifiers that are tuned to only increase

the prediction accuracies of one or two output classes may also be helpful as well. Hence, it

appears that cost-sensitivity can be leveraged not only for increasing the prediction accuracy

for a single output class in the context of a single classifier, but also for increasing overall

prediction accuracy in the context of majority-vote ensembles.

Second, both rounds of ensemble experiments support the proposition that diversity

can be generated by training classifiers on different feature sets and by using different classifier

models. This is consistent with what was expected, since both of these two approaches are

fairly commonly known methods for creating diversity.

There are, however, a number of questions that could be explored in further research.

For example, though all three approaches succeeded in creating diversity, it is unclear how

much benefit accrues from each approach individually and to what extent the different

approaches have a cumulative synergistic effect. In addition, it would be useful to explore

whether the most successful ensembles follow a pattern that might be exploited so that the

search space of possible majority-vote ensembles can be explored more efficiently. Do most of

the best ensembles, for example, consist of classifiers that meet a baseline overall accuracy?

Does the distribution of pairwise Yule Q statics between classifiers in the best ensembles
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Table 4.8: Q3 Accuracies of Classifiers Using CB396 Training Set and RS126 Test Set with
True Output Classes of 8 Neighboring Instances Used as Temporal Context Features

follow a specific pattern? Given an ensemble of size n, is there a way to select or generate an

(n+ 1)th classifier—perhaps using cost-sensitivity—that can be added to the ensemble (or

swapped in) and predictably increase overall prediction accuracy? Can these approaches for

creating diversity somehow be harnessed to create ensembles that achieve high prediction

accuracy while using constituent classifiers that achieve relatively low accuracy? These are

some of the questions that occurred to us. However, in order to avoid expanding the project

scope unreasonably, we decided it was prudent to move forward and explore the relevance of

temporal context nodes rather than drill deeper into the ensemble questions.

4.3 Evaluating the use of Temporal Context Nodes

4.3.1 Relaxation

For a first step, we decided to establish an upper bound of Q3 accuracy that we might expect

to achieve using temporal context nodes by creating test and training sets that included the

true output classes of instances n− 4 through n− 1 and instances n+ 1 through n+ 4 as

attributes for each instance n. In addition, each instance n had the original 13 amino-acid

letter features. Using CB396 as a training set and RS126 as test set, we created several

different classifiers. The Q3 accuracies of those classifiers are shown in table 4.8.

Since the best models achieved up to 100% Q3 accuracy, we were initially very

optimistic. If 100% accuracy was possible when the true secondary structures of an amino

acid’s neighboring amino acids were known, we reasoned that we might be able to achieve

good prediction results by (1) predicting the output classes for the instances in the test set

in a first iteration without using temporal context features, (2) using the predictions from
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Table 4.9: Q3 Accuracies Achieved in Successive Iterations Using the Relaxation Process

the first iteration as temporal context features for a second iteration, and (3) continuing

to use predictions from previous iterations in successive iterations until the Q3 accuracy

relaxed into an asymptotic value. We believed that such a process would likely yield at least

some increase in Q3 because some errors that might occur in the first iterations, such as

predicted alpha-helical sequences interrupted by single-amino-acid beta sheets, would likely

be corrected by a model that considered the structural context provided by temporal context

inputs.

We therefore implemented the relaxation process, as explained above, using several

different model types that were iteratively generated using Weka [84]. The results are shown

in table 4.9.

While the relaxation process resulted in some very small accuracy increases for some

model types, such as IBK and RandomForest, these accuracy increases were an order of

magnitude less than what we had hoped; the relaxation process never succeeded in raising

the Q3 accuracy more than three tenths of one percent. Upon examining the predictions

from the zeroth iteration (i.e., the iteration in which only letter attributes were used), we

noted that both correct predictions and incorrect predictions tended to appear in sequences.

Some clusters of consecutive instances in a protein chain would be correctly predicted to be

alpha helices, for example, while other clusters of consecutive instances would be incorrectly

predicted to be alpha helices when they were actually beta sheets. In hindsight, it seemed
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reasonable that clusters of incorrect predictions would limit the usefulness of the relaxation

process because the incorrect predictions would provide an incorrect context. As Minor

demonstrated in 1996, a sequence of up to eleven amino acids can fold into an alpha helix

or a beta sheet depending on context [6]. Hence, a classifier given incorrect context for an

instance might actually be making a prediction that would be correct if that instance was

actually surrounded by the predicted context rather than the true context.

We therefore decided to explore the possibility of whether Q3 accuracy improvement

could be achieved in a scheme that only provided a smaller number of context values—

specifically, context values that could be predicted with a higher degree of confidence. We

initially tried to build a prediction-confidence classifier that could predict whether or not

a prediction was correct based on the confidence probabilities provided in Weka output

buffers for some of the secondary-structure-prediction classifiers we had used. However, we

quickly discovered that the prediction-confidence classifier was only able to identify when a

secondary-structure-prediction classifier was making an error with about 60% accuracy. As a

result, we decided to apply a different approach, as follows.

4.3.2 Collaborative Model Using Three High-Precision Classifiers

We generated three different cost-sensitive Logistic classifiers, each tuned to have very high

precision for a single one of the three output classes (at the expense of recall). We then wrote

a script that compared each high-precision classifier’s predictions for each instance in the test

set (the RS126 data set). For each instance, if all three classifiers agreed, the consensus label

was assigned as the predicted label for that instance. If the three classifiers disagreed, but

only one classifier voted for its high-precision label, the high-precision label would be assigned

as the predicted label for that instance. Any other instance on which the classifiers disagreed

was assigned a label of unknown. Using these rules, 33.49% of the instances were assigned

predicted labels, while the remaining instances were given unknown labels. We noted that

the predicted labels were 79.75% accurate. Hence, at the very least, the approach with the
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Table 4.10: Q3 Accuracies Achieved Using Training Sets having Different Percentages Tem-
poral Context Features Unknown

three high-specificity models had succeeded in raising Q3 accuracy on the 33% of instances

whose labels were actually predicted.

The assigned labels were then used to generate an arff file that included the predicted

output labels (including the unknown label, where applicable) of instances n−4 through n−1

and instances n+ 1 through n+ 4 as attributes for each instance n. In addition, each instance

n had the original 13 amino-acid letter features. We were unsure of whether it would be best

to train a model using a training file (CB396) wherein all context labels were known, since

about 66% of the labels used as context attributes were unknowns. As a result, we decided to

generate a training file with a large number of unknown values for context attributes in the

following manner. First, we used a Logistic classifier in Weka using the standard 13-attribute

CB396 file as both the training set and the test set. We then wrote a script that generated

a new CB396 file with the temporal context attributes. Any instance that was incorrectly

predicted was assigned a context label (i.e., for the purposes of the context attributes only)

of unknown, while instances that were correctly predicted were assigned their true labels.

This resulted in a training file wherein just under 40% of the context attributes had unknown

values. We then used the same process to generate an RS126 file wherein about the same

percentage of context labels were unknown. We then trained (1) a first set of logistic and

RandomForest classifiers using the CB396 training set wherein the values for all context

attributes were known and (2) a second set of classifiers using the CB396 training set wherein

there were unknown values for some context attributes. Each classifier in each set was then

run on the RS126 test set wherein there were unknown values for some context attributes.

The results are shown in table 4.10.
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Since both types of classifiers performed better when using the training set that had

unknown values for some context attributes, we chose to use this training set to generate a

model on the test set that had been created using the three high-precision classifiers (the final

test set). We were still cautiously optimistic, since the results suggested that Q3 accuracy

could still be increased if a large percentage of context attributes had unknown values.

However, to our disappointment, both a logistic model and a RandomForest model used on

the final test set actually achieved lower Q3 accuracies—57.22% and 60.49%, respectively.

Hence, it appeared that the negative effect that incorrect context values caused may have been

amplified when fewer context values were known, even when a larger percentage of known

context values were correct. We considered trying to repeat the three-classifier approach

using models with even higher precision. In making preparations to do so, we discovered

that we had to push the recall for the N label all the way down to 7% to achieve precision of

92% using the cost-sensitive approach with a Logistic classifier. With our previous attempt,

our efforts had achieved the best precision with the least impact on recall using the N label.

Hence, if the N label’s precision and recall were to be considered upper bounds for the H

and E labels, and if it would be necessary to push the precision for all labels up to 100%,

we realized we would end up with so few known context labels that a good return would be

unlikely.

4.3.3 Conclusions Regarding Temporal Context Attributes and Directions for

Future Research

Ultimately, the approach of using predicted labels for context attributes and trying to relax

them yielded only a very small amount of benefit. However, where true labels are known for

at least some instances (about 60%, at least), it appears that Q3 accuracy of nearly 80% is

very achievable with fairly standard models. Relaxation and the collaborative three-model

high-precision approach do not appear to be effective ways to discern those true labels, but

other methods beyond the scope of this project might be. In particular, a good multiple-
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sequence alignment could be helpful. Suppose, for example, a newly sequenced protein aligns

well enough with some homologues whose structures are known. If all homologues have

identical secondary structures at 60% of the amino-acid positions in the alignment, then the

newly sequenced protein could be presumed to have those labels at those positions. These

labels could then be used as input for a classifier that uses them for the context features that

we have defined in this project.

Another observation worth noting is that it appears that certain regions in protein

chains tend to have much more predictable secondary structures than others. The results of

our collaborative three-model high-precision approach suggest that about 33% of the instances

in RS126 can be predicted with about 80% Q3 accuracy without using any information about

amino-acid properties or multiple-sequence alignments. Other instances in RS126 are much

more difficult to predict. There are many possible reasons why this might be the case. These

difficult instances might, for example, represent regions that truly could fold into more

than one secondary-structure conformation very easily—and there could even be a possible

biological and evolutionary advantage to such a phenomenon. A gene that can be alternatively

spliced, for example, might be better able to produce different proteins if certain regions are

amenable to folding into both alpha helices and beta sheets. It would also be very interesting

to explore whether multiple chaperone proteins that could all alternatively operate on the

same peptide chain could fold it into proteins with similar primary structures, but different

secondary and tertiary structures (and hence different functions). If this were the case, given

n protein chains and k chaperone proteins, n new proteins could be produced simply by

adding one new chaperone protein and k new proteins could be produced by adding one new

protein chain. This might lead to better efficiency with evolution in that a single mutation

could produce many new proteins. That being said, the presence of regions with flexible

secondary structure could also sometimes simply be a random phenomenon of evolution.
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Chapter 5

Conclusion

We spent a great deal of time and effort hoping to find a ”holy grail” that would allow

us to exceed the theoretical limit of 70% Q3 accuracy posited by Qian and Sejnowski for

single-sequence secondary-structure prediction methods (e.g., methods not using homology

information). While our efforts did not ultimately result in the discovery of a ”holy grail,”

we did ultimately make a number of contributions to the field, as explained below.

5.1 Contributions to the Field of Study

First, we have shown that a number of amino-acid properties that have not been used in

previous studies can be used to improve single-sequence Q3 prediction accuracy. While some

previous studies have used isolated properties, such as hydrophobicity, we have conducted a

thorough set of experiments exploring the relevance of amino-acid properties to secondary-

structure prediction by creating thousands of models using over 500 different amino-acid

properties. Our experiments demonstrate that classifiers trained using attributes derived from

some of these properties we have identified can increase Q3 accuracy by several percentage

points compared to controls, depending on the classifier type that is used.

Second, we have devised a number of novel ways to derive attributes from properties

that can aid in secondary-structure prediction. Attributes such as the inter-moment angle and

the moments over instance sub-windows have not been used in previous research. However,

when derived and used in the manner developed for this project, these novel attribute types

can form part of an attribute set that enables classifiers of several different types to achieve
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improved single-sequence Q3 prediction accuracy versus controls. Third, we have developed

a novel way to create diversity in a classifier set from which majority-vote ensembles for

single-sequence secondary-structure with improved Q3 prediction accuracy can be assembled.

Our results suggest that at least some synergistic effect can be harnessed by including

classifiers trained using attributes derived from different properties. Furthermore, our results

also suggest that overall prediction accuracy—not just prediction accuracy for a single output

class—can be improved by including some cost-sensitive classifiers that have been tuned

to achieve (1) relatively even prediction accuracies for all classes, (2) increased prediction

accuracy for two out of the three output classes, and (3) increased prediction accuracy for

one output class. The diversity created from using cost-sensitive classifiers, when combined

with diversity created by training classifiers using different feature sets and with diversity

created by using classifiers constructed using different algorithms, can help raise Q3 accuracy

by about one percentage point in majority-vote ensembles of 3, 5, or 7.

Fourth, we have shown that the three-class secondary structure of an amino-acid in a

protein can be predicted with near-perfect accuracy, even with very simple models, when

the true labels of the four upstream predecessors and the four downstream successors are

known and used as temporal context attributes. While this observation is not especially

useful for predicting the structures of proteins that lack homologues of known structure, it is

actually very useful for predicting the structures of proteins whose sequences vary from those

of known homologues only at individual positions (e.g., proteins that have single-nucleotide

polymorphisms (SNPs)). Furthermore, we have shown that nearly 80% Q3 accuracy can

be achieved when only about 60% of the temporal context attributes are known for a test

set. This shows that high Q3 accuracy can be achieved using models that are simpler than

previous models that can achieve comparable Q3 accuracy using homology information if

60% of the true amino-acid labels for protein can be ascertained (e.g., by using a multiple

sequence alignment wherein all homologues share a consensus label at 60% of the positions in

the protein). Thus, while we deliberately excluded homology information in our experiments,
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we ironically made a pair of discoveries that are, in this respect, more relevant to models

that incorporate homology information.

Fifth, we have shown that relaxing temporal context attributes used in the manner

we have described can raise Q3 accuracy by up to three tenths of a percent, depending on

the model used, in single-sequence prediction methods. While this improvement is an order

of magnitude smaller than what we had initially hoped, it is an improvement nonetheless.

5.2 Possible Directions for Future Work

In our experiments, we generated ARFF files using the same set of attribute types for each

property. However, the results shown in Appendix table A from our second round of feature

selection illustrate that some attribute types may be more relevant for certain properties than

for others. Future work could seek to define which specific attribute types work best with

certain properties with finer granularity. In addition, future work could also explore whether

the same pairs of properties and attribute-types are best for all different types of classifiers.

This may also help boost the prediction accuracy of some of the model types that were

used. The RBFNetwork classifier that was ultimately used in both rounds of our ensemble

experiments, for example, benefitted when a Weka filter (AttributeSelectedClassifier) was

used to exclude consideration of certain attributes. In addition, further work could explore

which properties can yield the most synergistic improvements in Q3 prediction accuracy when

used together. It would be interesting to determine whether properties that yield their best

results with dissimilar attribute types are more likely to synergize well with each other.

It would also be interesting to explore the phenomenon how to best leverage cost-

sensitive classifiers in a classifier set in order to achieve further improvements in Q3 prediction

accuracy of majority-vote ensembles. In our experiments, we used a brute-force approach

and were thus only able to test relatively small ensembles. However, more efficient searches

of the space of possible ensembles could likely be developed by using the pairwise Q statistic.

Individual classifiers could be added to an ensemble in a greedy fashion, for example, based
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on some metric that takes their pairwise Q value with each classifier that is already in the

ensemble and based on their own individual prediction accuracy. Furthermore, perhaps a

cost-sensitive classifier could be custom-tuned to match an existing ensemble’s needs and

added to the ensemble. These are only a few possibilities that could be explored.

Another important direction for future work is to investigate why several more

complicated models, such as the MultilayerPerceptron models and the RandomForest models,

did not achieve accuracy comparable to that of the simpler Logistic models. While we were

thorough in terms of how many properties we investigated, we did not focus on optimizing

model parameters (e.g., learning rate, momentum, number of nodes in each layer, and

number of epochs for the MultilayerPerceptron and number of trees, maximum tree depth,

pruning techniques, etc. for RandomForest) for individual model types. In theory, with

optimal parameters and optimal feature sets, it should be possible to generate versions of

the complicated models that perform at least as well as—and most likely better than—the

simpler Logistic model.
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Appendix A

(Table A)

Table A.1: (Page 1 of 3) These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Table A.2: (Page 2 of 3) These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Table A.3: (Page 3 of 3)These are the 78 attributes that were selected when the second
approach to feature selection was used.
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Appendix B

(Table B)

Table B.1: (Page 1 of 1) These are the 44 attributes that were used in each individual-property
arff file.
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Appendix C

(Table C)

Table C.1: (Page 1 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.2: (Page 2 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.3: (Page 3 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.4: (Page 4 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4

72



www.manaraa.com

Table C.5: (Page 5 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.6: (Page 6 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.7: (Page 7 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.8: (Page 8 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.9: (Page 9 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.10: (Page 10 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.11: (Page 11 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.12: (Page 12 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.13: (Page 13 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.14: (Page 14 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.15: (Page 15 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.16: (Page 16 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.17: (Page 17 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.18: (Page 18 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.19: (Page 19 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.20: (Page 20 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.21: (Page 21 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.22: (Page 22 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.23: (Page 23 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Table C.24: (Page 24 of 24) These are Q3 accuracies achieved by various machine-learning
models using the arff files generated using the attributes shown in table B (and in table 4.2)
on all properties tested, as explained in section 4.1.4
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Appendix D

(Table D)

Table D.1: (Page 1 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2
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Table D.2: (Page 2 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Table D.3: (Page 3 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Table D.4: (Page 4 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Table D.5: (Page 5 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Table D.6: (Page 6 of 6) These are the pairwise Yule’s Q statistics for all combinations of two
classifiers selected from the 66 models in the classifier set for the first round of majority-vote
ensembles, as explained in section 4.2.1.2.
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Appendix E

(Table E)

Table E.1: These are the number of times each classifier was used in ensembles that achieved
at least 66% Q3 accuracy in the first round of majority-vote ensembles, as explained in section
4.2.1.3.
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Appendix F

(Table F)

Table F.1: (Page 1 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Table F.2: (Page 2 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Table F.3: (Page 3 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Table F.4: (Page 4 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Table F.5: (Page 5 of 5) These are the pairwise Yule’s Q statistics for all combinations
of two classifiers selected from the 37 models in the classifier set for the second round of
majority-vote ensembles, as explained in section 4.2.2.1.
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Appendix G

(Table G)

Table G.1: These are the number of times each classifier was used in ensembles that achieved
at least 66% Q3 accuracy in the second round of majority-vote ensembles.
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